• Title/Summary/Keyword: Data Driven Technique

Search Result 176, Processing Time 0.026 seconds

Line Based Transformation Model (LBTM) for high-resolution satellite imagery rectification

  • Shaker, Ahmed;Shi, Wenzhong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.225-227
    • /
    • 2003
  • Traditional photogrammetry and satellite image rectification technique have been developed based on control-points for many decades. These techniques are driven from linked points in image space and the corresponding points in the object space in rigorous colinearity or coplanarity conditions. Recently, digital imagery facilitates the opportunity to use features as well as points for images rectification. These implementations were mainly based on rigorous models that incorporated geometric constraints into the bundle adjustment and could not be applied to the new high-resolution satellite imagery (HRSI) due to the absence of sensor calibration and satellite orbit information. This research is an attempt to establish a new Line Based Transformation Model (LBTM), which is based on linear features only or linear features with a number of ground control points instead of the traditional models that only use Ground Control Points (GCPs) for satellite imagery rectification. The new model does not require any further information about the sensor model or satellite ephemeris data. Synthetic as well as real data have been demonestrated to check the validity and fidelity of the new approach and the results showed that the LBTM can be used efficiently for rectifying HRSI.

  • PDF

Earth Analysis Method for Installation of Equipment for Moving Pesticide Spraying System (농약살포시스템 이동을 위한 기구물 설치를 위한 대지 분석방법)

  • Boo, Chang-Jin
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1152-1157
    • /
    • 2018
  • In this paper, we try to solve the difficulties of the location of the structure for the movement of the wire - based pesticide spraying equipment designed for field farming. To do this, we apply earth resistivity measurement method and analysis technique which can indirectly grasp the earth structure. Electrodes are installed on the field in a selected farming area, and multi-switches built in the control board are driven to automatically acquire ground resistivity data. Then, the optimal point suitable for the actual structure installation is selected through the site analysis using the 2D image restoration algorithm.

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.

Model Parameter-free Velocity Control of Permanent Magnet Synchronous Motor based on Koopman Operator (모델 파라미터 없는 쿠프만 연산자 기반의 영구자석 동기전동기의 속도제어)

  • Kim, Junsik;Woo, Heejin;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.308-313
    • /
    • 2022
  • This paper proposes a velocity control method for a permanent magnet synchronous motor (PMSM) based on the Koopman operator that does not require model parameter information except for pole-pair of the motor and external load. First, the Koopman operator is derived using observable functions and observation data. Then, the desired q-axis current corresponding to the desired velocity is generated using the relationship between the continuous-time Koopman operator and the dynamics of PMSM. Also, the dynamic equation of PMSM is expressed as a linear form in observable space using the discrete-time Koopman operator. Finally, it is applied to the linear quadratic regulator (LQR) to derive the final form of control input. To verify the proposed method, the conventional cascade PI controller and the LQR controller configured with the existing technique are compared with the proposed method in the viewpoint of q-axis current generation and velocity tracking performance in an environment with noise and external load.

Experimental Study and Correlation of the Solid-liquid Equilibrium of Some Amino Acids in Binary Organic Solvents

  • Mustafa Jaipallah Abualreish;Adel Noubigh
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.173-180
    • /
    • 2024
  • Under ordinary atmospheric circumstances, the gravimetric technique was used to measure the solubility of L-cysteine (L-Cys) and L-alanine (L-Ala) in various solvents, including methyl alcohol, ethyl acetate, and mixtures of the two, in the range o 283.15 K to 323.15 K. Both individual solvents and their combinations showed a rise in the solubility of L-Cys and L-Ala with increasing temperature, according to the analyzed data but when analyzed at a constant temperature in the selected mixed solvents, the solubility declined with decreasing of initial mole fractions of methyl alcohol. To further assess, the relative utility of the four solubility models, we fitted the solubility data using the Jouyban-Acree (J-A), van't Hoff-Jouyban-Acree (V-J-A), Apelblat-Jouyban-Acree (A-J-A), and Ma models followed by evaluation of the values of the RAD information criteria and the RMSD were. The dissolution was also found to be an entropy-driven spontaneous mixing process in the solvents since the thermodynamic parameters of the solvents were determined using the van't Hoff model. In order to support the industrial crystallization of L-cysteine and L-alanine and contribute to future theoretical research, we have determined the experimental solubility, correlation equations, and thermodynamic parameters of the selected amino acids during the dissolution process.

Efficient Flash Memory Access Power Reduction Techniques for IoT-Driven Rare-Event Logging Application (IoT 기반 간헐적 이벤트 로깅 응용에 최적화된 효율적 플래시 메모리 전력 소모 감소기법)

  • Kwon, Jisu;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.2
    • /
    • pp.87-96
    • /
    • 2019
  • Low power issue is one of the most critical problems in the Internet of Things (IoT), which are powered by battery. To solve this problem, various approaches have been presented so far. In this paper, we propose a method to reduce the power consumption by reducing the numbers of accesses into the flash memory consuming a large amount of power for on-chip software execution. Our approach is based on using cooperative logging structure to distribute the sampling overhead in single sensor node to adjacent nodes in case of rare-event applications. The proposed algorithm to identify event occurrence is newly introduced with negative feedback method by observing difference between past data and recent data coming from the sensor. When an event with need of flash access is determined, the proposed approach only allows access to write the sampled data in flash memory. The proposed event detection algorithm (EDA) result in 30% reduction of power consumption compared to the conventional flash write scheme for all cases of event. The sampled data from the sensor is first traced into the random access memory (RAM), and write access to the flash memory is delayed until the page buffer of the on-chip flash memory controller in the micro controller unit (MCU) is full of the numbers of the traced data, thereby reducing the frequency of accessing flash memory. This technique additionally reduces power consumption by 40% compared to flash-write all data. By sharing the sampling information via LoRa channel, the overhead in sampling data is distributed, to reduce the sampling load on each node, so that the 66% reduction of total power consumption is achieved in several IoT edge nodes by removing the sampling operation of duplicated data.

Evaluation of Collaborative Filtering Methods for Developing Online Music Contents Recommendation System (온라인 음악 콘텐츠 추천 시스템 구현을 위한 협업 필터링 기법들의 비교 평가)

  • Yoo, Youngseok;Kim, Jiyeon;Sohn, Bangyong;Jung, Jongjin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1083-1091
    • /
    • 2017
  • As big data technologies have been developed and massive data have exploded from users through various channels, CEO of global IT enterprise mentioned core importance of data in next generation business. Therefore various machine learning technologies have been necessary to apply data driven services but especially recommendation has been core technique in viewpoint of directly providing summarized information or exact choice of items to users in information flooding environment. Recently evolved recommendation techniques have been proposed by many researchers and most of service companies with big data tried to apply refined recommendation method on their online business. For example, Amazon used item to item collaborative filtering method on its sales distribution platform. In this paper, we develop a commercial web service for suggesting music contents and implement three representative collaborative filtering methods on the service. We also produce recommendation lists with three methods based on real world sample data and evaluate the usefulness of them by comparison among the produced result. This study is meaningful in terms of suggesting the right direction and practicality when companies and developers want to develop web services by applying big data based recommendation techniques in practical environment.

Analysis technique to support personalized English education based on contents (맞춤형 영어 교육을 지원하기 위한 콘텐츠 기반 분석 기법)

  • Jung, Woosung;Lee, Eunjoo
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.55-65
    • /
    • 2022
  • As Internet and mobile technology is developing, the educational environment is changing from the traditional passive way into an active one driven by learners. It is important to construct the proper learner's profile for personalized education where learners are able to study according to their learning levels. The existing studies on ICT-based personalized education have mostly focused on vocabulary and learning contents. In this paper, learning profile is constructed with not only vocabulary but grammar to define a learner's learning status in more detailed way. A proficiency metric is defined which shows how a learner is accustomed to the learning contents. The simulational results present the suggested approach is effective to the evaluation essay data with each learner's proficiency that is determined after pre-learning process. Additionally, the proposed analysis technique enables to provide statistics or graphs of the learner's status and necessary data for the learner's learning contents.

Prospects of omics-driven synthetic biology for sustainable agriculture

  • Soyoung Park;Sung-Dug Oh;Vimalraj Mani;Jin A Kim;Kihun Ha;Soo-Kwon Park;Kijong Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.801-812
    • /
    • 2022
  • Omics-driven synthetic biology is a multidisciplinary research field that creates new artificial life by employing genetic components, biological devices, and engineering technique based on genetic knowledge and technological expertise. It is also utilized to make valuable biomaterials with limited production via current organisms faster, more efficient, and in huge quantities. As the bioeconomic age begins, and the global synthetic biology market becomes more competitive, investment in research and development (R&D) and associated sectors has grown considerably. By overcoming the constraints of present biotechnologies through the merging of big data and artificial intelligence technologies, huge ripple effects are envisaged in the pharmaceutical, chemical, and energy industries. In agriculture, synthetic biology is being used to solve current agricultural problems and develop sustainable agricultural systems by increasing crop productivity, implementing low-carbon agriculture, and developing plant-based, high-value-added bio-materials such as vaccines for diagnosing and preventing livestock diseases. As international regulatory debates on synthetic biology are now underway, discussions should also take place in our country for the growth of bioindustries and the dissemination of research findings. Furthermore, the system must be improved to facilitate practical application and to enhance the risk evaluation technology and management system.

An Filtering Automatic Technique of LiDAR Data by Multiple Linear Regression Analysis (다중선형 회귀분석에 의한 LiDAR 자료의 필터링 자동화 기법)

  • Choi, Seung-Pil;Cho, Ji-Hyun;Kim, Jun-Seong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.109-118
    • /
    • 2011
  • In this research estimated accuracies that were results in all the area of filtering of the plane equation that was used by whole data set, and regional of filtering that was driven by the plane equation for each vertual Grid. All of this estimates were based by all the area of filtering that deduced the plane equation by multiple linear regression analysis that was used by ground data set. Therefore, accuracy of all the area of filtering that used whole data set has been dropped about 2~3% when average of accuracy of all the area of filtering was based on ground data set while accuracy of Regional of filtering dropped 2~4% when based on virtual Grid. Moreover, as virtual Grid which was set 3~4 cm was difference about 2% of accuracy from standard data. Thus, it leads conclusion of set 3~4 times bigger size in virtual Grid filtering over LiDAR scan gap will be more appropriated. Hence, the result of this research allow us to conclude that there was difference in average accuracy has been noticed when we applied each different approaches, I strongly suggest that it need to research more about real topography for further filtering accuracy.