• 제목/요약/키워드: Data Correction

검색결과 2,499건 처리시간 0.035초

A Steganographic Data Hiding Method in Timestamps by Bit Correction Technique for Anti-Forensics

  • Cho, Gyu-Sang
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권8호
    • /
    • pp.75-84
    • /
    • 2018
  • In this research, a bit correction technique of data hiding method in timestamp of MFT entry in NTFS file system is proposed. This method is proposed in two ways, depending on the number of bytes of data to hide. A basic data hiding method using a bit correction technique to solve the problems of the conventional 2-byte technique is proposed. In order to increase the capacity of the data, a 3-byte data hiding method using an extended bit correction technique is proposed. The data hiding method in the timestamps is based on the fact that is not revealed in the Windows explorer window and the command prompt window even if any data is hidden in the timestamp area of less than one second. It is shown that the validity of the proposed method through the experimental two cases of the basic data hiding method by the bit correction method and the 3-byte data hiding method by the extended bit correction method.

MSAS 보정정보 분석 및 국내 적용 시 성능 평가 (Analysis of MSAS Correction Information and Performance in Korea)

  • 정명숙;김정래
    • 한국항공우주학회지
    • /
    • 제37권4호
    • /
    • pp.372-382
    • /
    • 2009
  • 자체 개발한 SBAS 보정정보 처리 프로그램을 이용하여 MSAS 궤도 보정정보의 정확도를 분석하고, MSAS 전리층 보정정보 대한 적도변이의 영향을 분석하였다. 또한 MSAS 보정정보의 일부분의 제거를 통해 보정정보의 수신지연으로 인한 정확도 저하와 그것이 Protection Level에 미치는 영향을 분석하였다. 그리고 국내에서 MSAS 보정정보를 이용하여 항공기 정밀접근 시 시스템의 무결성 및 가용성에 대해 분석했다.

An Algorithm for Baseline Correction of SELDI/MALDI Mass Spectrometry Data

  • Lee, Kyeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권4호
    • /
    • pp.1289-1297
    • /
    • 2006
  • Before other statistical data analysis the preprocessing steps should be performed adequately to have meaningful results. These steps include processes such as baseline correction, normalization, denoising, and multiple alignment. In this paper an algorithm for baseline correction is proposed with using the piecewise cubic Hermite interpolation with block-selected points and local minima after denoising for SELDI or MALDI mass spectrometry data.

  • PDF

Filtering Correction Method and Performance Comparison for Time Series Data

  • Baek, Jongwoo;Choi, Jiyoung;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • 제20권2호
    • /
    • pp.125-130
    • /
    • 2022
  • In modern society, as many data are used for research or commercial purposes, the value of data is gradually increasing. In related fields, research is being actively conducted to collect valuable data, but it is difficult to collect proper data because the value of collection is determined according to the performance of existing sensors. To solve this problem, a method to effectively reduce noise has been proposed, but there is a point in which performance is degraded due to damage caused by noise. In this paper, a device capable of collecting time series data was designed to correct such data noise, and a correction technique was performed by giving an error value based on the representatively collected ultrafine dust data, and then comparing before and after Compare performance. For the correction method, Kalman, LPF, Savitzky-Golay, and Moving Average filter were used. Savitzky-Golay filter and Moving Average Filter showed excellent correction rate as an experiment. Through this, the performance of the sensor can be supplemented and it is expected that data can be effectively collected.

Absolute Atmospheric Correction Procedure for the EO-1 Hyperion Data Using MODTRAN Code

  • Kim, Sun-Hwa;Kang, Sung-Jin;Chi, Jun-Hwa;Lee, Kyu-Sung
    • 대한원격탐사학회지
    • /
    • 제23권1호
    • /
    • pp.7-14
    • /
    • 2007
  • Atmospheric correction is one of critical procedures to extract quantitative information related to biophysical variables from hyperspectral imagery. Most atmospheric correction algorithms developed for hyperspectral data have been based upon atmospheric radiative transfer (RT) codes, such as MODTRAN. Because of the difficulty in acquisition of atmospheric data at the time of image capture, the complexity of RT model, and large volume of hyperspectral data, atmospheric correction can be very difficult and time-consuming processing. In this study, we attempted to develop an efficient method for the atmospheric correction of EO-1 Hyperion data. This method uses the pre-calculated look-up-table (LUT) for fast and simple processing. The pre-calculated LUT was generated by successive running of MODTRAN model with several input parameters related to solar and sensor geometry, radiometric specification of sensor, and atmospheric condition. Atmospheric water vapour contents image was generated directly from a few absorption bands of Hyperion data themselves and used one of input parameters. This new atmospheric correction method was tested on the Hyperion data acquired on June 3, 2001 over Seoul area. Reflectance spectra of several known targets corresponded with the typical pattern of spectral reflectance on the atmospherically corrected Hyperion image, although further improvement to reduce sensor noise is necessary.

An Experimental Study on the Image-Based Atmospheric Correction Using Multispectral Data

  • Lee Kwang-Jae;Kim Yong-Seung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.196-200
    • /
    • 2004
  • The purpose of this study is to examine the image­based atmospheric correction models using the data from Landsat Enhanced Thermal Mapper Plus (ETM+) that have quite similar spectral characteristics to the forthcoming Korea Multi-Purpose SATellite (KOMPSAT)-2 Multi-Spectral Camera (MSC), and the in-situ measured surface reflectance data during satellite overflight. The main advantage of this type of correction is that it does not require in-situ measurements during each satellite overflight. While substantial differences are present between Top-Of-the Atmosphere (TOA) reflectance and in-situ measurements, the results showed that Case 1 based on COST model gives most accurate results among three cases. The accuracy of Case 2 is very close to Case 1 and its values are smaller than in-situ data. No notable features appear between some bands in the Case 3 and in-situ data. It is expected from this study that if the current methods are applied to the IKONOS high resolution data, we will be able to develop the suitable atmospheric correction methods for MSC data.

  • PDF

AVHRR MOSAIC IMAGE DATA SET FOR ASIAN REGION

  • Yokoyama, Ryuzo;Lei, Liping;Purevdorj, Ts.;Tanba, Sumio
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.285-289
    • /
    • 1999
  • A processing system to produce cloud-free composite image data set was developed. In the process, a fine geometric correction based on orbit parameters and ground control points and radiometric correction based on 6S code are applied. Presently, by using AVHRR image data received at Tokyo, Okinawa, Ulaanbaatar and Bangkok, data set of 10 days composite images covering almost whole Asian region.

  • PDF

에러 보정 코드를 이용한 비동기용 대용량 메모리 모듈의 성능 향상 (Performance Improvement of Asynchronous Mass Memory Module Using Error Correction Code)

  • 안재현;양오;연준상
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.112-117
    • /
    • 2020
  • NAND flash memory is a non-volatile memory that retains stored data even without power supply. Internal memory used as a data storage device and solid-state drive (SSD) is used in portable devices such as smartphones and digital cameras. However, NAND flash memory carries the risk of electric shock, which can cause errors during read/write operations, so use error correction codes to ensure reliability. It efficiently recovers bad block information, which is a defect in NAND flash memory. BBT (Bad Block Table) is configured to manage data to increase stability, and as a result of experimenting with the error correction code algorithm, the bit error rate per page unit of 4Mbytes memory was on average 0ppm, and 100ppm without error correction code. Through the error correction code algorithm, data stability and reliability can be improved.

New In-Orbit Pixel Correction Method

  • Kim Youngsun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Chang Young-Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.604-607
    • /
    • 2005
  • All CCD pixels do not react uniformly even if the light of same radiance enters into the camera. This comes from the different camera optical characteristics, the read-out characteristics, the pixel own characteristics and so on. Usually, the image data of satellite camera can be corrected by the various image-processing methods in the ground. However, sometimes, the in-orbit correction is needed to get the higher quality image. Especially high frequency pixel correction in the middle of in-orbit mission is needed because the in-orbit data compression with the high frequency loss is essential to transmit many data in real time due to the limited RF bandwidth. In this case, this high frequency correction can prevent have to have any unnecessary high frequency loss. This in-orbit correction can be done by the specific correction table, which consists of the gain and the offset correction value for each pixel. So, it is very important to get more accurate correction table for good correction results. This paper shows the new algorithm to get accurate pixel correction table. This algorithm shall be verified theoretically and also verified with the various simulation and the test results.

  • PDF

변동경향을 보존하는 편의보정기법을 이용한 우리나라의 평균 및 극한기온 모의결과 보정 (Correction of Mean and Extreme Temperature Simulation over South Korea Using a Trend-preserving Bias Correction Method)

  • 정현채;서명석
    • 대기
    • /
    • 제25권2호
    • /
    • pp.205-219
    • /
    • 2015
  • In this study, the simulation results of temperature by regional climate model (Reg- CM4) over South Korea were corrected by Hempel et al. (2013)'s method (Hempel method), and evaluated with the observation data of 50 stations from Korea Meteorological Administration. Among the 30 years (1981~2010) of simulation data, 20 years (1981~2000) of simulation data were used as a training data, and the remnant 10 years (2001~2010) data were used for the evaluation of correction. In general, the Hempel method and parametric quantile mapping show a reasonable correction both in mean and extreme climate of temperature. As the results, the systematic underestimation of mean temperature was greatly reduced after bias correction by Hempel method. And the overestimation of extreme climate, such as the number of TN5% and freezing day, was significantly recovered. In addition to that, the Hempel method better preserved the temporal trend of simulated temperature than other bias correction methods, such as the quantile mapping. However, the overcorrection of the extreme climate related to the upper quantile, such as TX5% and hot days, resulted in the exaggeration of the simulation errors. In general, the Hempel method can reduce the systematic biases embedded in the simulation results preserving the temporal trend but it tends to overcorrect the non-linear biases, in particular, extreme climate related to the upper percentile.