• Title/Summary/Keyword: Data Collision

Search Result 911, Processing Time 0.033 seconds

Collision Detection Algorithm using a 9-axis Sensor in Road Facility (9축센서 기반의 도로시설물 충돌감지 알고리즘)

  • Hong, Ki Hyeon;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.297-310
    • /
    • 2022
  • Road facilities such as CCTV poles have potential risk of collision accidents with a car. A collision detection algorithm installed in the facility allows the collision accident to be known remotely. Most collision detection algorithms are operated by simply focusing on whether a collision have occurred, because these methods are used to measure only acceleration data from a 3-axis sensor to detect collision. However, it is difficult to detect other detailed information such as malfunction of the sensor, collision direction and collision strength, because it is not known without witness the accident. Therefore, we proposed enhanced detection algorithm to get the collision direction, and the collision strength from the tilt of the facility after accident using a 9-axis sensor in this paper. In order to confirm the performance of the algorithm, an accuracy evaluation experiment was conducted according to the data measurement cycle and the invocation cycle to an detection algorithm. As a result, the proposed enhanced algorithm confirmed 100% accuracy for 50 weak collisions and 50 strong collisions at the 9-axis data measurement cycle of 10ms and the invocation cycle of 1,000ms. In conclusion, the algorithm proposed is expected to provide more reliable and detailed information than existing algorithm.

A Comparative Study on Collision Detection Algorithms based on Joint Torque Sensor using Machine Learning (기계학습을 이용한 Joint Torque Sensor 기반의 충돌 감지 알고리즘 비교 연구)

  • Jo, Seonghyeon;Kwon, Wookyong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.169-176
    • /
    • 2020
  • This paper studied the collision detection of robot manipulators for safe collaboration in human-robot interaction. Based on sensor-based collision detection, external torque is detached from subtracting robot dynamics. To detect collision using joint torque sensor data, a comparative study was conducted using data-based machine learning algorithm. Data was collected from the actual 3 degree-of-freedom (DOF) robot manipulator, and the data was labeled by threshold and handwork. Using support vector machine (SVM), decision tree and k-nearest neighbors KNN method, we derive the optimal parameters of each algorithm and compare the collision classification performance. The simulation results are analyzed for each method, and we confirmed that by an optimal collision status detection model with high prediction accuracy.

Network Type Distributed Control System with Considering Data Collision (데이터 충돌을 고려한 네트워크형 분산 제어 시스템)

  • Choi, Goon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.113-120
    • /
    • 2015
  • Network type distributed control system uses a communication line which is named the BUS to exchange a data among the sub-systems. Usually, on the bus, only one data must be exited at one time, so the control algorithm to prevent collision or to manage a priority of data is important. Including CAN Protocol, many kind of FieldBus which are used for distributed control system, prevent data collision by controlling transmission time. But, a system which have to make a control signal or get a data from a sensor at fixed time will be met a problem when it is composed by using a network type distributed control structure. In this paper, some of these cases will be discussed and solutions be proposed for preventing a data collision. Also, using Arago Disk System which have a structure for inner loop control, the validity of the proposed methods will be verified.

Validation on the algorithm of estimation of collision risk among ships based on AIS data of actual ships' collision accident (선박충돌사고 AIS 데이터 기반 선박 충돌위험도 추정 알고리즘 검증에 관한 연구)

  • Son, Nam-Sun;Kim, Sun-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.180-181
    • /
    • 2010
  • An estimation algorithm of collision risk among multiple ships has been developed in order to reduce human error and prevent collision accidents. The algorithm is designed to calculate the collision risk among ships based on Fuzzy theory by using AIS data as traffic information. In this paper, to validate the algorithm, the AIS data of actual collision accident, which occurred between a product carrier and a cargo carrier in Busan harbor in 2009 are collected. The replay simulation is carried out on the actual AIS data and the collision risk is calculated in real time. In this paper, the features of the estimation algorithm of collision risk and the results of replay simulation based on AIS data of actual collision accident are discussed.

  • PDF

Validation on the Algorithm of Estimation of Collision Risk among Ships based on AIS Data of Actual Ships' Collision Accident (선박충돌사고의 AIS 데이터를 이용한 선박 충돌위험도 추정 알고리즘 검증에 관한 연구)

  • Son, Nam-Sun;Kim, Sun-Young
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.727-733
    • /
    • 2010
  • An estimation algorithm of collision risk among multiple ships has been developed in order to reduce human error and prevent collision accidents. The algorithm is designed to calculate the collision risk among ships based on Fuzzy theory by using AIS data as traffic information. In this paper, to validate the algorithm, the AIS data of actual collision accident, which occurred between a product carrier and a cargo carrier in Busan harbor in 2009 are collected. The replay simulation is carried out on the actual AIS data and the collision risk is calculated in real time. In this paper, the features of the estimation algorithm of collision risk and the results of replay simulation based on AIS data of actual collision accident are discussed.

A Study on the Data Anti-collision using Time-domain Procedure on RFID(Radio Frequency Identification) System (무선인식 시스템에서 시간절차를 이용한 데이터 충돌 방지에 관한 연구)

  • 강민수;신석균;이준호;이동선;유광균;박영수;이기서
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.4
    • /
    • pp.155-161
    • /
    • 2001
  • In this paper, the method is suggested to prevent data collision or damage on RFID(Radio Frequency Identification) system, in case a reader reading multi-tag simultaneously, using binary-search algorithm and Time-domain anti-collision procedure at reader and tag, respectively. The RFID system is designed that Reader enable to communicate with Tag on 13.56MHz bandwidth which is ISM(Industrial Science Medical) bandwidth, antennas of Tag part are designed using MCRF335 Chip. When RF communication is achieved between reader and tag, in case that data is transmitted to reader pass through multiple tags simultaneously, a study on the anti-collision method for the situation that the data collision occurs is performed.

  • PDF

Forward Collision Warning System based on Radar driven Fusion with Camera (레이더/카메라 센서융합을 이용한 전방차량 충돌경보 시스템)

  • Moon, Seungwuk;Moon, Il Ki;Shin, Kwangkeun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.5-10
    • /
    • 2013
  • This paper describes a Forward Collision Warning (FCW) system based on the radar driven fusion with camera. The objective of FCW system is to provide an appropriate alert with satisfying the evaluation scenarios of US-NCAP and a driver acceptance. For this purpose, this paper proposed a data fusion algorithm and a collision warning algorithm. The data fusion algorithm generates information of fusion target depending on the confidence of camera sensor. The collision warning algorithm calculates indexes and determines an appropriate alert-timing by using analysis results of manual driving data. The FCW system with the proposed data fusion and collision warning algorithm was investigated via scenarios of US-NCAP and a real-road driving. It is shown that the proposed FCW system can improve the accuracy of an alarm-timing and reduce the false alarm in real roads.

A study on the Data Anti-Collision of RFID system (무선인식시스템의 데이터 충돌방지에 관한 연구)

  • 강민수;신석균;백선기;박면규;곽칠성;이기서
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.471-477
    • /
    • 2002
  • In this paper, it is proposed instruction code satisfied algorithm that is able to prevent data collision when transponder access in the area of recognition system that is operated to single channel. Differ from absolute collision is used to in the time domain procedure, instruction code satisfied algorithm, transmits data which don't generate collision and must satisfy instruction code. So, to prevent data collision, transponder is of great if it read the entire instruction code. Consequently, it is applied to algorithm that made the system of wireless recognition13.56 Mhz. As a result, for the time of one bit data transmission had 14${\mu}$s difference, it is proved the prevention of data loss in experiment.

  • PDF

A study on the Anti-Collision of RFID system using Instruction Code Sufficiency (명령 코드 충족 알고리즘을 이용한 무선인식 시스뎀의 데이터 충돌 방지에 관한 연구)

  • 강민수;이동선;이기서
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6B
    • /
    • pp.544-552
    • /
    • 2003
  • This paper suggests an instruction code sufficiency algorithm preventing data collision when multiple transponders attempt to connect in the radio frequency identification system. Conventional time domain procedure generates unconditional collision. On the other hand, this algorithm prevents data collision by transmitting data when it meets instruction code. When multiple transponders are transmitting data coincidently, they exploit desired data with using difference of arrival time generated by recognition distance, respectively. As a result of simulation, utilizing the wireless recognition system, adopting the suggested algorithm, operating in 13.56MHz frequency band, it verify that there is Anti-collision and data loss by ensuring transmission time difference of one bit by adopting this algorithm.

A DESIGN OF INTERSECTION COLLISION AVOIDANCE SYSTEM BASED ON UBIQUITOUS SENSOR NETWORKS

  • Kim, Min-Soo;Lee, Eun-Kyu;Jang, Byung-Tae
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.749-752
    • /
    • 2005
  • In this paper, we introduce an Intersection Collision Avoidance (ICA) system as a convergence example of Telematics and USN technology and show several requirements for the ICA system. Also, we propose a system design that satisfies the requirements of reliable vehicular data acquisition, real-time data transmission, and effective intersection collision prediction. The ICA system consists of vehicles, sensor nodes and a base station that can provide drivers with a reliable ICA service. Then, we propose several technological solutions needed when implementing the ICA system. Those are about sensor nodes deployment, vehicular information transmission, vehicular location data acquisition, and intersection collision prediction methods. We expect this system will be a good case study applied to real Telematics application based on USN technology.

  • PDF