• Title/Summary/Keyword: Data Clustering

Search Result 2,706, Processing Time 0.037 seconds

Environmental Survey Data Modeling Using K-means Clustering Techniques

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.557-566
    • /
    • 2005
  • Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. In this paper we used k-means clustering of several clustering techniques. The k-means Clustering Is classified as a partitional clustering method. We analyze 2002 Gyeongnam social indicator survey data using k-means clustering techniques for environmental information. We can use these outputs given by k-means clustering for environmental preservation and environmental improvement.

  • PDF

Environmental Survey Data Modeling using K-means Clustering Techniques

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.77-86
    • /
    • 2004
  • Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. In this paper we used k-means clustering of several clustering techniques. The k-means Clustering is classified as a partitional clustering method. We analyze 2002 Gyeongnam social indicator survey data using k-means clustering techniques for environmental information. We can use these outputs given by k-means clustering for environmental preservation and environmental improvement.

  • PDF

K-means Clustering for Environmental Indicator Survey Data

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.185-192
    • /
    • 2005
  • There are many data mining techniques such as association rule, decision tree, neural network analysis, clustering, genetic algorithm, bayesian network, memory-based reasoning, etc. We analyze 2003 Gyeongnam social indicator survey data using k-means clustering technique for environmental information. Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. In this paper, we used k-means clustering of several clustering techniques. The k-means clustering is classified as a partitional clustering method. We can apply k-means clustering outputs to environmental preservation and environmental improvement.

  • PDF

Twostep Clustering of Environmental Indicator Survey Data

  • Park, Hee-Chang
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.59-69
    • /
    • 2005
  • Data mining technique is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. It has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research on off-line or on-line and so on. We analyze Gyeongnam social indicator survey data by 2001 using twostep clustering technique for environment information. The twostep clustering is classified as a partitional clustering method. We can apply these twostep clustering outputs to environmental preservation and improvement.

  • PDF

On the clustering of huge categorical data

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1353-1359
    • /
    • 2010
  • Basic objective in cluster analysis is to discover natural groupings of items. In general, clustering is conducted based on some similarity (or dissimilarity) matrix or the original input data. Various measures of similarities between objects are developed. In this paper, we consider a clustering of huge categorical real data set which shows the aspects of time-location-activity of Korean people. Some useful similarity measure for the data set, are developed and adopted for the categorical variables. Hierarchical and nonhierarchical clustering method are applied for the considered data set which is huge and consists of many categorical variables.

Clustering Approaches to Identifying Gene Expression Patterns from DNA Microarray Data

  • Do, Jin Hwan;Choi, Dong-Kug
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.279-288
    • /
    • 2008
  • The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

Twostep Clustering of Environmental Indicator Survey Data

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2006
  • Data mining technique is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. It has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research on off-line or on-line and so on. We analyze Gyeongnam social indicator survey data by 2001 using twostep clustering technique for environment information. The twostep clustering is classified as a partitional clustering method. We can apply these twostep clustering outputs to environmental preservation and improvement.

  • PDF

Veri cation of Improving a Clustering Algorith for Microarray Data with Missing Values

  • Kim, Su-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.315-321
    • /
    • 2011
  • Gene expression microarray data often include multiple missing values. Most gene expression analysis (including gene clustering analysis); however, require a complete data matric as an input. In ordinary clustering methods, just a single missing value makes one abandon the whole data of a gene even if the rest of data for that gene was intact. The quality of analysis may decrease seriously as the missing rate is increased. In the opposite aspect, the imputation of missing value may result in an artifact that reduces the reliability of the analysis. To clarify this contradiction in microarray clustering analysis, this paper compared the accuracy of clustering with and without imputation over several microarray data having different missing rates. This paper also tested the clustering efficiency of several imputation methods including our propose algorithm. The results showed it is worthwhile to check the clustering result in this alternative way without any imputed data for the imperfect microarray data.

Path based K-means Clustering for RFID Data Sets

  • Yun, Hong-Won
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.434-438
    • /
    • 2008
  • Massive data are continuously produced with a data rate of over several terabytes every day. These applications need effective clustering algorithms to achieve an overall high performance computation. In this paper, we propose ancestor as cluster center based approach to clustering, the K-means algorithm using ancestor. We modify the K-means algorithm. We present a clustering architecture and a clustering algorithm that minimize of I/Os and show a performance with excellent. In our experimental performance evaluation, we present that our algorithm can improve the I/O speed and the query processing time.

Performance evaluation of principal component analysis for clustering problems

  • Kim, Jae-Hwan;Yang, Tae-Min;Kim, Jung-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.726-732
    • /
    • 2016
  • Clustering analysis is widely used in data mining to classify data into categories on the basis of their similarity. Through the decades, many clustering techniques have been developed, including hierarchical and non-hierarchical algorithms. In gene profiling problems, because of the large number of genes and the complexity of biological networks, dimensionality reduction techniques are critical exploratory tools for clustering analysis of gene expression data. Recently, clustering analysis of applying dimensionality reduction techniques was also proposed. PCA (principal component analysis) is a popular methd of dimensionality reduction techniques for clustering problems. However, previous studies analyzed the performance of PCA for only full data sets. In this paper, to specifically and robustly evaluate the performance of PCA for clustering analysis, we exploit an improved FCBF (fast correlation-based filter) of feature selection methods for supervised clustering data sets, and employ two well-known clustering algorithms: k-means and k-medoids. Computational results from supervised data sets show that the performance of PCA is very poor for large-scale features.