• 제목/요약/키워드: Data Analysis

검색결과 86,316건 처리시간 0.087초

빅데이터 분석도구의 특성 (The Characteristics of Tools for Big Data Analysis)

  • 김도관;소순후
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.114-116
    • /
    • 2016
  • 오늘날 빅데이터 분석은 새로운 고객의 니즈를 추적하는 중요한 도구로 활용되고 있다. 빅데이터 분석 결과를 제공하는 다양한 사이트들은 각각의 서비스 유형과 특성에 따라 다양한 형태로 분석결과를 제시해주고 있다. 때문에 마케팅 분야에서 빅데이터 분석을 활용할 때는 각각의 사이트가 제공하는 빅데이터 분석 결과의 유형과 특성을 종합적으로 고려해야할 것이다. 이러한 점에서 본 연구에서는 현재 빅데이터 분석 서비스를 제공하는 사이트들의 분석 결과와 유형을 비교분석하고자 한다.

  • PDF

소셜 빅데이터 마이닝 기반 이슈 분석보고서 자동 생성 (Automatic Generation of Issue Analysis Report Based on Social Big Data Mining)

  • 허정;이충희;오효정;윤여찬;김현기;조요한;옥철영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권12호
    • /
    • pp.553-564
    • /
    • 2014
  • 본 논문은 지금까지의 소셜미디어 분석과 분석보고서 생성의 세 가지 문제점을 해결하기 위해서 소셜 빅데이터 마이닝에 기반한 이슈분석보고서 자동 생성 시스템을 제안한다. 세 가지 문제점은 분석의 고립성, 전문가의 주관성과 고비용에 기인한 정보의 폐쇄성이다. 시스템은 자연언어 질의분석, 이슈분석, 소셜 빅데이터 분석, 소셜 빅데이터 상관성분석과 자동 보고서 생성으로 구성된다. 생성된 보고서의 유용성을 평가하기 위해, 본 논문에서는 리커트척도를 사용하였고, 빅데이터 분석 전문가 2명이 평가하였다. 평가결과는 리커트 척도 평가에서 보고서의 품질이 비교적 유용하고 신뢰할 수 있는 것으로 평가되었다. 보고서 생성의 저비용, 소셜 빅데이터의 상관성 분석과 소셜 빅데이터 분석의 객관성 때문에, 제안된 시스템이 소셜 빅데이터 분석의 대중화를 선도할 것으로 기대된다.

A Study on the Sentiment Analysis of City Tour Using Big Data

  • Se-won Jeon;Gi-Hwan Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권2호
    • /
    • pp.112-117
    • /
    • 2023
  • This study aims to find out what tourists' interests and perceptions are like through online big data. Big data for a total of five years from 2018 to 2022 were collected using the Textom program. Sentiment analysis was performed with the collected data. Sentiment analysis expresses the necessity and emotions of city tours in online reviews written by tourists using city tours. The purpose of this study is to extract and analyze keywords representing satisfaction. The sentiment analysis program provided by the big data analysis platform "TEXTOM" was used to study positives and negatives based on sentiment analysis of tourists' online reviews. Sentiment analysis was conducted by collecting reviews related to the city tour. The degree of positive and negative emotions for the city tour was investigated and what emotional words were analyzed for each item. As a result of big data sentiment analysis to examine the emotions and sentiments of tourists about the city tour, 93.8% positive and 6.2% negative, indicating that more than half of the tourists are positively aware. This paper collects tourists' opinions based on the analyzed sentiment analysis, understands the quality characteristics of city tours based on the analysis using the collected data, and sentiment analysis provides important information to the city tour platform for each region.

다기능레이더 데이터 획득 및 분석 장치 개발 (The Development of the Data Acquisition & Analysis System for Multi-Function Radar)

  • 송준호
    • 한국군사과학기술학회지
    • /
    • 제14권1호
    • /
    • pp.106-113
    • /
    • 2011
  • This paper describes Data Acquisition & Analysis System(DAS) for analysis of the multi-function radar. There are various information - beam probing data, clutter map data, plot data, target tracking data, RT tracking data, radar signal processing data, interface data - this device saves. The most important thing of data analysis is that a researcher gets a view of the whole data. The DAS intergrates with all of the data and provides overall information on the time matters occur. This is very useful advantage for approaching the matter easily. System algorithms of multi-function radar are improved by using this advantage. As a result of, range blank region have fallen about 72% and it is able to keep track in jammer environment.

Analyzing RDF Data in Linked Open Data Cloud using Formal Concept Analysis

  • Hwang, Suk-Hyung;Cho, Dong-Heon
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.57-68
    • /
    • 2017
  • The Linked Open Data(LOD) cloud is quickly becoming one of the largest collections of interlinked datasets and the de facto standard for publishing, sharing and connecting pieces of data on the Web. Data publishers from diverse domains publish their data using Resource Description Framework(RDF) data model and provide SPARQL endpoints to enable querying their data, which enables creating a global, distributed and interconnected dataspace on the LOD cloud. Although it is possible to extract structured data as query results by using SPARQL, users have very poor in analysis and visualization of RDF data from SPARQL query results. Therefore, to tackle this issue, based on Formal Concept Analysis, we propose a novel approach for analyzing and visualizing useful information from the LOD cloud. The RDF data analysis and visualization technique proposed in this paper can be utilized in the field of semantic web data mining by extracting and analyzing the information and knowledge inherent in LOD and supporting classification and visualization.

Road Surface Data Collection and Analysis using A2B Communication in Vehicles from Bearings and Deep Learning Research

  • Young-Min KIM;Jae-Yong HWANG;Sun-Kyoung KANG
    • 한국인공지능학회지
    • /
    • 제11권4호
    • /
    • pp.21-27
    • /
    • 2023
  • This paper discusses a deep learning-based road surface analysis system that collects data by installing vibration sensors on the 4-axis wheel bearings of a vehicle, analyzes the data, and appropriately classifies the characteristics of the current driving road surface for use in the vehicle's control system. The data used for road surface analysis is real-time large-capacity data, with 48K samples per second, and the A2B protocol, which is used for large-capacity real-time data communication in modern vehicles, was used to collect the data. CAN and CAN-FD commonly used in vehicle communication, are unable to perform real-time road surface analysis due to bandwidth limitations. By using A2B communication, data was collected at a maximum bandwidth for real-time analysis, requiring a minimum of 24K samples/sec for evaluation. Based on the data collected for real-time analysis, performance was assessed using deep learning models such as LSTM, GRU, and RNN. The results showed similar road surface classification performance across all models. It was also observed that the quality of data used during the training process had an impact on the performance of each model.

OLAP를 이용한 설계변경 분석 방법에 관한 연구 (A Method for Engineering Change Analysis by Using OLAP)

  • 도남철
    • 한국CDE학회논문집
    • /
    • 제19권2호
    • /
    • pp.103-110
    • /
    • 2014
  • Engineering changes are indispensable engineering and management activities for manufactures to develop competitive products and to maintain consistency of its product data. Analysis of engineering changes provides a core functionality to support decision makings for engineering change management. This study aims to develop a method for analysis of engineering changes based on On-Line Analytical Processing (OLAP), a proven database analysis technology that has been applied to various business areas. This approach automates data processing for engineering change analysis from product databases that follow an international standard for product data management (PDM), and enables analysts to analyze various aspects of engineering changes with its OLAP operations. The study consists of modeling a standard PDM database and a multidimensional data model for engineering change analysis, implementing the standard and multidimensional models with PDM and data cube systems and applying the implemented data cube to core functions of engineering change management, the evaluation and propagation of engineering changes.

데이터 사이언티스트의 역량과 빅데이터 분석성과의 PLS 경로모형분석 : Kaggle 플랫폼을 중심으로 (PLS Path Modeling to Investigate the Relations between Competencies of Data Scientist and Big Data Analysis Performance : Focused on Kaggle Platform)

  • 한경진;조근태
    • 대한산업공학회지
    • /
    • 제42권2호
    • /
    • pp.112-121
    • /
    • 2016
  • This paper focuses on competencies of data scientists and behavioral intention that affect big data analysis performance. This experiment examined nine core factors required by data scientists. In order to investigate this, we conducted a survey to gather data from 103 data scientists who participated in big data competition at Kaggle platform and used factor analysis and PLS-SEM for the analysis methods. The results show that some key competency factors have influential effect on the big data analysis performance. This study is to provide a new theoretical basis needed for relevant research by analyzing the structural relationship between the individual competencies and performance, and practically to identify the priorities of the core competencies that data scientists must have.

기업 마케팅 전략을 위한 SNS 및 Web 데이터 분석 시스템 설계 (A Design of SNS and Web Data Analysis System for Company Marketing Strategy)

  • 이병관;정은희;정이나
    • 한국정보전자통신기술학회논문지
    • /
    • 제6권4호
    • /
    • pp.195-200
    • /
    • 2013
  • 본 논문에서는 기업 이미지에 타격을 줄 수 있는 부정적인 SNS와 Web 데이터를 빠르게 분석하여 기업 마케팅 전략에 활용할 수 있는 SNS 및 Web 데이터 분석 시스템을 제안한다. 본 논문에서 제안하는 시스템은 SNS 및 Web Data를 수집하는 데이터 수집 모듈(Data Collection Module), 수집된 데이터를 저장하는 HBase 모듈(Hbase Module), 수집된 데이터의 의미 분석을 수행한 후 데이터의 의미를 평가 및 분류하는 데이터 분석 모듈(Data Analysis Module) 그리고 관리자에 의해 요청된 질의어에 따라 기업과 관련된 SNS와 Web데이터를 이용하여 최적화된 Map Reduce 과정을 수행하는 PSH 모듈(Priority Scheduling Hadoop Module)로 구성된다. 본 논문은 이런 모듈들을 통하여 SNS와 Web 데이터를 보다 효율적으로 관리하여 이 분석 결과를 기업 마케팅 전략에 활용할 수 있다.

연관규칙을 이용한 데이터 분석에 관한 연구 (A Study on the Analysis of Data Using Association Rule)

  • 임영문;최영두
    • 산업경영시스템학회지
    • /
    • 제23권61호
    • /
    • pp.115-126
    • /
    • 2000
  • In General, data mining is defined as the knowledge discovery or extracting hidden necessary information from large databases. Its technique can be applied into decision making, prediction, and information analysis through analyzing of relationship and pattern among data. One of the most important works is to find association rules in data mining. Association Rule is mainly being used in basket analysis. In addition, it has been used in the analysis of web-log and user-pattern. This paper provides the application method in the field of marketing through the analysis of data using association rule as a technique of data mining.

  • PDF