• Title/Summary/Keyword: Dark treatment

Search Result 514, Processing Time 0.025 seconds

Two-stage Bioprocesses Combining Dark H2 Fermentation: Organic Waste Treatment and Bioenergy Production (혐기성 수소발효를 결합한 생물학적 2단공정의 유기성폐자원 처리 및 바이오에너지 생산)

  • LEE, CHAE-YOUNG;YOO, KYU-SEON;HAN, SUN-KEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.247-259
    • /
    • 2015
  • This study was performed to investigate the application of dark $H_2$ fermentation to two-stage bioprocesses for organic waste treatment and energy production. We reviewed information about the two-stage bioprocesses combining dark $H_2$ fermentation with $CH_4$ fermentation, photo $H_2$ fermentation, microbial fuel cells (MFCs), or microbial electrolysis cells (MECs) by using academic information databases and university libraries. Dark fermentative bacteria use organic waste as the sole source of electrons and energy, converting it into $H_2$. The reactions related to dark $H_2$ fermentation are rapid and do not require sunlight, making them useful for treating organic waste. However, the degradation is not complete and organic acids remain. Thus, dark $H_2$ fermentation should be combined with a post-treatment process, such as $CH_4$ fermentation, photo $H_2$ fermentation, MFCs, or MECs. So far, dark $H_2$ fermentation followed by $CH_4$ fermentation is a promising two-stage bioprocess among them. However, if the problems of manufacturing expenses, operational cost, scale-up, and practical applications will be solved, the two-stage bioprocesses combining dark $H_2$ fermentation with photo $H_2$ fermentation, MFCs, or MECs have also infinite potential in organic waste treatment and energy production. This paper demonstrated the feasibility of two-stage bioprocesses combining dark $H_2$ fermentation as a novel system for organic waste treatment and energy production.

Effects of Photo/dark period and Relative Humidity during Dark Period on Growth and Tipburn Occurrence of Water Dropwort (Oenanthe stolonifera DC.) in a Closed-type Plant Factory (밀폐형 식물공장에서 명/암주기와 암기동안의 상대습도가 미나리 생육과 팁번 발생에 미치는 영향)

  • An, Jae Uk;Joung, Kyoung Hee;Yoon, Hae Suk;Hwang, Yeon Hyeon;Hong, Gwang Pyo
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.146-150
    • /
    • 2017
  • This research investigated the effect of photo/dark period and relative humidity during dark period on the growth and quality of water dropwort in a closed-type plant factory system. At 30 days after planting, the shoot fresh weight of water dropwort under relative humidity of 60/90%(light/dark) treatment significantly higher than that under relative humidity of 60/60% treatment. The shoot fresh weight of water dropwort increased by extending light period under relative humidity of 60/60% treatment, but 16/8h photo/dark period showed the best shoot fresh weight, followed by 20/4h and 22/2h under relative humidity of 60/90% treatment. In the relative humidity of 60/90% treatment, the tipburn occurrence was reduced under 16/8h photo/dark period condition as 1.4%, whereas it was significantly increased under 20/4h and 22/2h of relatively long light time duration as 15.5% and 30.3%, respectively. In the relative humidity of 60/60% treatment, the tipburn occurrence was 15.5% under 16/8h photo/dark period condition and those under 20/4h and 22/2h photo/dark period condition were higher than 25%. The stem hardness of water dropwort was lowest in relative humidity of 60/90% and 16/8h photo/dark period treatment. The mineral contents of leaves were decreased by extending light period, but the contents of Ca were not different significantly among the treatments except the 60/60% and 22/2h treatment.

Mercury-Induced Light-Dependent Alterations of Chlorophyll a Fluorescence Kinetics in Barley Leaves

  • Lee, Choon-Hwan
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.11-18
    • /
    • 1995
  • Mercury-induced changes in Chl a fluorescence induction kinetics of scratched barley leaf segments were dependent on the presence of light. By the treatment of 50$\mu$M HgCl2 under light condition, Fm and Fp were decreased. However, they were not significantly reduced under dark condition even after 2 h of mercury treatment. Under dark condition the decrease in variable fluorescence (Fv) after P transient was blocked within 20 min of the treatment. The analysis of fast fluorescence rise curve suggests that the inhibitory site of mercury under both light and dark conditions is not at QB binding site and the inhibition does not involve the increase in inactive PSII centers. Under light condition the decrease in Fp was partially recovered by addition of 50 $\mu$M NH2OH. These results suggest that a major inhibitory site of mercury under dark condition is at the reducing side of PSII and the site under light condition is at the oxidizing side of PSII possibly in addition to the one under dark condition. Under both light and dark conditions, energy-dependent quenching(qE) was alomost completely repressed within 20 min of mercury treatment and noticible change in Fo was not observed. The qE repression is probably due to the blockage of transthylakoid ΔpH formation.

  • PDF

Photoperiodic Floral Induction in Pharbitis Cotyledons Affected by Polyamines and Ethylene

  • Jueson Maeng
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.227-234
    • /
    • 1995
  • Exogenous putrescine of 0.5 mM or higher concentratons applied during a 16 h inductive dark period could elevate putrescine content in cotyledons of Pharbitis nil Choisy cv. Violet, a short-day plant, resulting in complete blocking of photoperiodic floral induction. Titers of putrescine, spermidine and spermine in the cotyledons were traced throughout a 16 h dark period. While non-induced cotyledons under continous light slightly increased levels of polyamines, induced tissue maintaiend its putrescine, spermidine and spermine levels as low as 66.4%, 60.9% and 84.9% of non-induced levels respecitvely. Endogenous polyamines kept at lower levels in the inductive dark period were found to upsurge by a night break treatment of 10 min light in the middle of the dark and consequently the inductive dark effect was canceled. Elevation of polyamine titers could also be induced by 100 $\mu$L/L ethylene treatment which completely suppressed floral induction. Compared to untreated cotyledons, ehtylene-treated tissues increased putrescine content by as much as 136.5% in 12 h and spermidine level by up to 130.1% in 8 h. Ethylene-treated cotyledons not only increased endogenous polyamine content but also liberate ethylene in the second half of the inductive dark period accumulating up to three to fourfold level supporting a hypothesis that ethylene-treated tissues are stimulated to produce ethylene which in turn accelerates polyamine biosynthesis in the tissues. It is postulated that substantially low polyamine titers in the inductive dark period would be one of the necessary factors controlling photoperiodic induction of flowering in Pharbitis nil and the inhibitory effects of night break and exogenous ethylene treatment may be atributed to their action to stimulate endogenous polyamine production.

  • PDF

Protective Role of Light in Heat-Induced Inhibition of Photosynthesis in Isolated Chloroplasts

  • Jun, Sung-Soo;Kim, Chang-Hoon;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • v.5 no.4
    • /
    • pp.157-162
    • /
    • 1998
  • The effect of heat treatment in the light on the subsequent CO2 fixation was studied with isolated spinach chloroplasts to define the role of light during heat stress. The degree of inhibition in CO2 fixation after heat treatment at 35$^{\circ}C$ under full light intensity (600W/$m^2$) was same as that in the dark. However, heat treatment of isolated chloroplasts in the light manifested thylakoidal damage, which did not occur in the dark. Under weak light (10~30 W/$m^2$ ) where no thylakoidal damage occurred, the inhibition was substantially alleviated , showing protective effect of light . The inhibition caused by heat treatment in the dark or light is prevented by the addition of a few combined compounds to the medium prior to treatment. Fructose-1-6- bisphosphate(with aldolase)and ribose-5-phosphate, known to be effective combined with oxaloacetate in preventing inhibition after heat treatment in the dark were equally effective in the light even without oxaloacetate. Addition of sugar phosphate reduced the Mehler reaction, which may occur in fast rae under high light. However, the addition of bicarbnate and catalase that would remove Mehler reaction did not provide any protection, indicating that protective role of sugar phosphate is elsewhere. Furghermore, in whole plants rapid recovery from heat stress was observed in the light. The apparently lesser or equal inhibition in spite of additional thylakoidal damage under heat stres in the light and less requirement for the protection against heat treatment suggest that the inhibitory effect of heat stress is alleviated by light treatment.

  • PDF

Experimental Study on Reduction of Temporal Dark Image Sticking on Bright Screen in AC-PDPs Using RF-Plasma Treatment on MgO layer

  • Park, Choon-Sang;Kim, Jae-Hyun;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.101-103
    • /
    • 2009
  • Minimizing the residual impurity level on the MgO layer is the key factor for reducing temporal dark image sticking on bright screen. In this paper, to reduce the residual impurity level on the MgO layer of 50-in. full-HD ac-PDP with He (35%) - Xe (11%) contents, RF-plasma treatments on the MgO layer are adopted under various gases for plasma treatment. As a result of monitoring the difference in the display luminance between the before and after 5-min. sustain discharge with a square-type image at peak luminance, the Ar and Ar>$O_2$ plasma treatments can reduce the temporal dark image sticking on the bright screen in an ac-PDP.

  • PDF

Photo-Induced Cytotoxicity of Prodigiosin Analogues

  • Park, Gyung-Se;Tomlinson, John T.;Misenheimer, Jacob A.;Kucera, Gregory L.;Manderville, Richard A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.49-52
    • /
    • 2007
  • Prodigiosin (1) is the parent member of a class of polypyrrole natural products that exhibit promising anticancer activities. They can facilitate copper-promoted oxidative DNA damage by binding to copper ions, and this activity is thought to represent their mechanism of cytotoxicity in the dark. They also possess photoinduced cytotoxicity, although 1 is too toxic in the dark to be used effectively for the treatment of cancer by photodynamic therapies. To circumvent dark toxicity by prodigiosins, the semi-synthetic analogue 2, in which the N-pyrrolic atoms of 1 are methylated to block copper coordination, and the synthetic phenyl analogues 3 and 4, which lack the copper-coordinating A-pyrrole ring of 1, were tested for their ability to inhibit colony formation of HL-60 cancer cells in the absence and presence of visible light (λ > 495 nm). Our results show that 2-4 lack cytotoxicity in the dark, but are able to inhibit colony formation of HL-60 cells following irradiation for 30 min. The synthetic derivative 4 exhibits photo-induced cytotoxicity similar to that of the natural product 1, demonstrating the potential use of prodigiosin-based compounds for treatment of cancers following irradiation with visible light.

Effects of Dark Treatment and DCMU on Desaturation of Galactolipids in Dunaliella salina (Dunaliella salina 당지질의 불포화반응에 미치는 암처리 및 DCMU의 효과)

  • 조성호
    • Journal of Plant Biology
    • /
    • v.36 no.3
    • /
    • pp.293-296
    • /
    • 1993
  • Effects of dark treatment and N1-dichlorophenyl-N3-dimethylurea (DCMU) on the desaturation of galactolipids of Dunaliella salina were investigated to see whether light-driven photosynthetic electron transport is involved in in vivo desaturation of galactolipids. The incorporation of radioactive fatty acid precursors ([14C]lauric acid) into galactolipids, mainly composed of prokaryotic molecular species, was most affected among different polar lipid classes by both treatments. The analysis of specific radioactivities of individual galactolipid molecular species revealed that their synthesis was greatly inhibited by the treatments except for eukaryotic molecular species, 18 : 3/ 18 : 3 digalactosyldiacylglycerol, whose desaturation occurs in endoplasmic reticulum.

  • PDF

Electron Transport Activities of Chloroplasts Isolated from the Detached Rice Leaves Stored under Low Temperature with Illumination (광 및 저온처리한 벼잎 절편에서 분이한 엽록체의 전자전달 활성)

  • 문병용
    • Journal of Plant Biology
    • /
    • v.31 no.4
    • /
    • pp.299-307
    • /
    • 1988
  • The electron transport activities of choloroplasts isolated from hte detached rise (Oryza sativa L. cv. Chucheong) leave stored under low temperature(4$^{\circ}C$) with light illumination were investigated to understand the role of light in the low temperature inhibition of photosynthesis in the chilling-sensitive plants. Chlorophyll content of the detached leaves upon incubation at 28$^{\circ}C$ and 4$^{\circ}C$ in the dark was also measured. The rice seedlings were grown with Hoagland medium in the growth chamber of 28$^{\circ}C$ temperature and 400 ft.c fluorescent light with the photoperiod of 16 h. Although chlorophyll content of the detached leaves stored in the dark declined by 61.7% after 28$^{\circ}C$ treatement, there occurred only 5.2% decrease of chlorophyll with 4$^{\circ}C$ treatment. Low temperature treatment(4$^{\circ}C$) for 6 days brought about decreases in total photosystem(PS II+PS I) activities by 35.2% and 73.6% in te presence and absence of light, respectively, while after 28$^{\circ}C$ treatment of the detached leaves for 6 days in the dark there was only 27.6% decrease in PS II+PS I activity. PS II activities were also decreased by 35.6% and 72.2% in the light and dark, respectively. PS I activities were decreased slightly, however, by 7.6% and 16.2% in the light and dark, respectively. Investigations into DPClongrightarrowDCPIP and NH2OHlongrightarrowDCPIP activities revealed that low temperature inhibition of PS II activities was not due to the inactivation of the water oxidation capacity at low temperature. It was concluded that light protects the electron transport activities of isolated rice chloroplasts from the inhibitory effect of low temperature in the detached leaves.

  • PDF

Effects of Paraquat on Ascorbic Acid and Malondialdehyde Contents, and Superoxide Dismutase Activity in Spinach Chloroplasts under Light and Dark

  • Won-Hyuck Park;Yang-Hee Chang
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.81.1-86
    • /
    • 1992
  • The amounts of ascorbic acid in chloroplasts treated with light and light+paraquat (PQ) were reduced by 81 and 82% of initial level, respectively at 24 hr at incubation. And those treated with dark and dark+PQ were decreased by W and 55% of the original level, respectively. Malondialdehyde (MDA) contents at 24 hr of dark and dark+PQ treatment were increased by 6 and 31% of the initial level, respectively. When chloroplasts were treated with light and light+PQ, MDA contents after 24 hr were increased by 88 and 146% of the initial level, respectively. SOD activities treated with light and light+PQ were increased by 10 and 20% of the initial level, respectively for 3 hr and thereafter reduced by 46 and 49% of the original level, respectively at 24 hr. However, the SOD activities treated with dark and dark+PQ were decreased by 37 and 30% of the initial level, respectively. It is considered that PQ triggers the oxidation of ascorbic acid, the induction of lipid peroxidation and the inactivation of SOD under light so that PQ has inhibitors effect on the pathway of plant metabolism. Key word: ascorbic acid, malondialdehyde, superoxide dismutase, paraquat, lipid peroxidation.

  • PDF