• Title/Summary/Keyword: Dark channel

Search Result 95, Processing Time 0.022 seconds

Single Image Dehazing Using Dark Channel Prior and Minimal Atmospheric Veil

  • Zhou, Xiao;Wang, Chengyou;Wang, Liping;Wang, Nan;Fu, Qiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.341-363
    • /
    • 2016
  • Haze or fog is a common natural phenomenon. In foggy weather, the captured pictures are difficult to be applied to computer vision system, such as road traffic detection, target tracking, etc. Therefore, the image dehazing technique has become a hotspot in the field of image processing. This paper presents an overview of the existing achievements on the image dehazing technique. The intent of this paper is not to review all the relevant works that have appeared in the literature, but rather to focus on two main works, that is, image dehazing scheme based on atmospheric veil and image dehazing scheme based on dark channel prior. After the overview and a comparative study, we propose an improved image dehazing method, which is based on two image dehazing schemes mentioned above. Our image dehazing method can obtain the fog-free images by proposing a more desirable atmospheric veil and estimating atmospheric light more accurately. In addition, we adjust the transmission of the sky regions and conduct tone mapping for the obtained images. Compared with other state of the art algorithms, experiment results show that images recovered by our algorithm are clearer and more natural, especially at distant scene and places where scene depth jumps abruptly.

Digital Image based Real-time Sea Fog Removal Technique using GPU (GPU를 이용한 영상기반 고속 해무제거 기술)

  • Choi, Woon-sik;Lee, Yoon-hyuk;Seo, Young-ho;Choi, Hyun-jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2355-2362
    • /
    • 2016
  • Seg fog removal is an important issue concerned by both computer vision and image processing. Sea fog or haze removal is widely used in lots of fields, such as automatic control system, CCTV, and image recognition. Color image dehazing techniques have been extensively studied, and expecially the dark channel prior(DCP) technique has been widely used. This paper propose a fast and efficient image prior - dark channel prior to remove seg-fog from a single digital image based on the GPU. We implement the basic parallel program and then optimize it to obtain performance acceleration with more than 250 times. While paralleling and the optimizing the algorithm, we improve some parts of the original serial program or basic parallel program according to the characteristics of several steps. The proposed GPU programming algorithm and implementation results may be used with advantages as pre-processing in many systems, such as safe navigation for ship, topographical survey, intelligent vehicles, etc.

Optimization of Dehazing Method for Efficient Implementation (효율적인 구현을 위한 안개 제거 방법의 최적화)

  • Kim, Minsang;Park, Yongmin;Kim, Byung-O;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.58-65
    • /
    • 2016
  • This paper presents optimization techniques to reduce the processing time of the dehazing method and proposes an efficient dehazing method based on them. In the proposed techniques, the atmospheric light is estimated based on the distributed sorting of the dark channel pixels, so as to reduce the computations. The normalization process required in the transmission estimation is simplified by the assumption that the atmospheric light is monochromatic. In addition, the dark channel is modified into the median dark channel in order to eliminate the transmission refinement process while achieving a comparable dehazing quality. The proposed dehazing method based on the optimization techniques is presented and its performance is investigated by developing a prototype system. When compared to the previous method, the proposed dehazing method reduces the processing time by 65% while maintaining the dehazing quality.

Analytical Modeling for Dark and Photo Current Characteristics of Short Channel GaAs MESFETs (단채널 GaAs MESFET의 DC특성 및 광전류 특성의 해석적 모델에 대한 연구)

  • 김정문;서정하
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.15-30
    • /
    • 2004
  • In this paper, an analytical modeling for the dark and photo-current characteristics of a buried-gate short- channel GaAs MESFET is presented. The presented model shows that the increase of drain current under illumination is largely due to not the increase of photo-conductivity in the neutral region but the narrowing effect of the depletion layer width. The carrier density profile within the neutral region is derived from solving the carrier continuity equation one-dimensionally. In deriving the photo-generated current, we assume that the photo-current is compensated with the thermionic emission current at the gate-channel interface. Moreover, the two-dimensional Poisson's equation is solved by taking into account the drain-induced longitudinal field effect. In conclusion, the proposed model seems to provide a reasonable explanation for the dark and photo current characteristics in a unified manner.

Single Image Haze Removal Technique via Pixel-based Joint BDCP and Hierarchical Bilateral Filter (픽셀 기반 Joint BDCP와 계층적 양방향 필터를 적용한 단일 영상 기반 안개 제거 기법)

  • Oh, Won-Geun;Kim, Jong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.257-264
    • /
    • 2019
  • This paper presents a single image haze removal method via a pixel-based joint BDCP (bright and dark channel prior) and a hierarchical bilateral filter in order to reduce computational complexity and memory requirement while improving the dehazing performance. Pixel-based joint BDCP reduces the computational complexity compared to the patch-based DCP, while making it possible to estimate the atmospheric light in pixel unit and the transmission more accurately. Moreover the bilateral filter, which can smooth an image effectively while preserving edges, refines the transmission to reduce the halo effects, and its hierarchical structure applied to edges only prevents the increase of complexity from the iterative application. Experimental results on various hazy images show that the proposed method exhibits excellent haze removal performance with low computational complexity compared to the conventional methods, and thus it can be applied in various fields.

Effective Single Image Haze Removal using Edge-Preserving Transmission Estimation and Guided Image Filtering (에지 보존 전달량 추정 및 Guided Image Filtering을 이용한 효과적인 단일 영상 안개 제거)

  • Kim, Jong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1303-1310
    • /
    • 2021
  • We propose an edge-preserving transmission estimation by comparing the patch-based dark channel and the pixel-based dark channel near the edge, in order to improve the quality of outdoor images deteriorated by conditions such as fog and smog. Moreover, we propose a refinement that applies the Guided Image Filtering (GIF), a kind of edge-preserving smoothing filtering methods, to edges using Laplacian operation for natural restoration of image objects and backgrounds, so that we can dehaze a single image and improve the visibility effectively. Experimental results carried out on various outdoor hazy images that show the proposed method has less computational complexity than the conventional methods, while reducing distortion such as halo effect, and showing excellent dehazing performance. In It can be confirmed that the proposed method can be applied to various fields including devices requiring real-time performance.

High-Speed and High-Quality Haze Removal Method Based on Dual Dark Channels (이중 다크 채널에 기반한 고속 고품질의 안개 제거 방법)

  • Moon, Sun-A;Kim, Won-Tae;Kim, Tae-Hwan
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.697-705
    • /
    • 2015
  • This paper proposes a high-speed and high-quality haze removal method based on dual dark channels. In the conventional method, the halo artifacts are suppressed by the additional transmission refinement, but the transmission refinement is computationally intensive and the quality of the haze removal is sometimes unsatisfactory because of the residual halo artifacts. In the proposed method, the transmission is estimated with the mixture of the two dark channels with different window size. By mixing the two dark channels so as to avoid the halo artifacts, the proposed method realizes a high-quality haze removal even without the transmission refinement. Experimental results demonstrate that the quality of the results by the proposed method is superior to those by the conventional method and the speed of the haze removal is about 14.2 times higher than that of the conventional method.

A Novel Method of All-Optical Switching: Quantum Router

  • Ham, Byoung-Seung
    • ETRI Journal
    • /
    • v.23 no.3
    • /
    • pp.106-110
    • /
    • 2001
  • Subpicosecond all-optical switching method based on the simultaneous two-photon coherence exchange is proposed and numerically demonstrated. The optical switching mechanism is based on the optical field induced dark resonance swapping via nondegenerate four-wave mixing processes. For potential applications of ultrafast all-optical switching in fiber-optic communications, 10-THz channel number independent quantum router is discussed.

  • PDF

Visibility Enhancement of Underwater Image Using a Color Transform Model (색상 변환 모델을 이용한 수중 영상의 가시성 개선)

  • Jang, Ik-Hee;Park, Jeong-Seon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.645-652
    • /
    • 2015
  • In underwater, such as fish farm and sea, turbidity is increased by water droplets and various suspended, therefore light attenuation occurs depending on the depth also caused by the scattering effect of light float. In this paper, in order to improve the visibility of underwater images obtained from these aquatic environment, we propose a visibility enhancement method using a haze removal method based on dark channel prior and a trained color transform model. In order to train a color transform model, we used underwater pattern images captured from Pohang and Yeosu, and to measure the performance of the proposed method, we carried out experiment of visibility enhancement using underwater images collected from Yeosu, Geomundo and Philippines. The results show that the proposed method can improve the visibility of underwater images of various locations.

Single Image-based Enhancement Techniques for Underwater Optical Imaging

  • Kim, Do Gyun;Kim, Soo Mee
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.442-453
    • /
    • 2020
  • Underwater color images suffer from low visibility and color cast effects caused by light attenuation by water and floating particles. This study applied single image enhancement techniques to enhance the quality of underwater images and compared their performance with real underwater images taken in Korean waters. Dark channel prior (DCP), gradient transform, image fusion, and generative adversarial networks (GAN), such as cycleGAN and underwater GAN (UGAN), were considered for single image enhancement. Their performance was evaluated in terms of underwater image quality measure, underwater color image quality evaluation, gray-world assumption, and blur metric. The DCP saturated the underwater images to a specific greenish or bluish color tone and reduced the brightness of the background signal. The gradient transform method with two transmission maps were sensitive to the light source and highlighted the region exposed to light. Although image fusion enabled reasonable color correction, the object details were lost due to the last fusion step. CycleGAN corrected overall color tone relatively well but generated artifacts in the background. UGAN showed good visual quality and obtained the highest scores against all figures of merit (FOMs) by compensating for the colors and visibility compared to the other single enhancement methods.