• Title/Summary/Keyword: Daphnia Magna

Search Result 154, Processing Time 0.023 seconds

Ecotoxicity of Daphnia magna and Aliivibrio fischeri on Potentially Harmful Substances Emissionsfrom Battery Manufacturing Processes: Lithium, Nickel, and Sulfate (배터리 제조공정에서 배출되는 잠재 유해 물질에 대한 물벼룩과 발광박테리아의 생태독성: 리튬, 니켈, 황산염을 대상으로)

  • Inhye Roh;Kijune Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.2
    • /
    • pp.123-133
    • /
    • 2023
  • Wastewater generated in the secondary battery production process contains lithium and high-concentration sulfate. Recently, as demand as demand for high-Ni precursors with high-energy density has surged, nickel emission is also a concern. Lithium and sulfate are not included in the current water pollutant discharge standard, so if they are not properly processed and discharged, the negative effect on future environment may be great. Therefore, in this study, the ecotoxicity of lithium, nickel, and sulfate, which are potential contaminants that can be discharged from the secondary battery production process, was evaluated using water flea (Daphnia magna) and luminescent bacteria (Aliivibrio fischeri). As a result of the ecotoxicity test, 24-hour and 48-hour D. magna EC50 values of lithium were 18.2mg/L and 14.5mg/L, nickel EC50 values were 7.2mg/L and 5.4mg/L, and sulfate EC50 values were 4,605.5mg/L and 4,345.0mg/L, respectively. In the case of D. magna, it was found that there was a difference in ecotoxicity according to the contaminants and exposure time (24 hours, 48 hours). Comparing the EC50 of D. magna for lithium, nickel, and sulfate, the EC50 of nickel at 24h and 48h was 39.6-37.2% compared to lithium and 0.1-0.2% compared to sulfate, which was the most toxic among the three substances. The difference appeared to be at a similarlevelregardless of the exposure time. The EC50 of sulfate was 253.0-299.7% and 639.5-804.6%, respectively, compared to lithium and nickel, showing the least toxicity among the three substances. The 30-minute EC50 values of luminescent bacteria forlithium, nickel, and sulfate were 2,755.8mg/L, 7.4mg/L, and 66,047.3mg/L,respectively. Unlike nickel, it was confirmed that there was a difference in sensitivity between D. magna and A. fischeri bacteria to lithium and sulfate. Studies on the mixture toxicity of these substances are needed.

Induction of colony formation in planktonic algae by substances released from grazer zooplankton

  • Kyong, Ha;Jang, Min-Ho;Joo, Gea-Jae;Bahk, Jae-Rim;Takamura, Noriko
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.11a
    • /
    • pp.198-200
    • /
    • 2001
  • Grager-Induced colony formation was examined using strains of green alga Scenedemus dimorphus (Turpin) Kutzing. Alga was cultured in a medium with or without filtered water in which Daphnia magna or Moina macrocopa had been reared. Colony formation was obviously promoted in S. dimorphus by exposure to zooplankton filtered water (ZFW), showing in proportion to the volume of zooplankton filtered water in cultured media. The particle volume as well as the number of cells per one colony of S. dimorphus increased between 24 and 48 hours after exposure to ZFW, which were caused by an infochemical released from from Daphnia or Moina probably as a part of defense mechanism against zooplankton grazing.

  • PDF

Effect of Zooplankton Exposures on the Biomass and Intracellular Microcystin in Microcystis aeruginosa and Planktothrix agadhii (동물플랑크톤 노출 강도가 유해남조 Microcystis aeruginosa와 Planktothrix agardhii의 생체량 및 세포내 microcystin함량변화에 미치는 영향)

  • Jang, Min-Ho;Jung, Jong-Mun;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.209-218
    • /
    • 2006
  • This study was to evaluate microcystin production by two strains of cyanobacteria (Microcystis aeruginosa and Planktothrix agardhii) in response to three different levels of direct (0,4,8 inds.) or indirect (0,25, 50% of zooplankton culture media filtrate) exposures to zooplankton (Daphnia magna and Moina macrocopa). The cell biomass and intracellular microcystin (MC) were measured everyday. The survival rates of zooplankton were evaluated for daily intervals for the direct exposure. The intracellular MC produced peaked on the day 3 or 4, and then decreased over the both exposure experiment. In the direct experiment, the MC values were significantly different among the control and zooplankton treatments (ZT; repeated measures-ANOVA: P< 0.039). The MC contents of P. agardhii strain (No.204) were significantly higher (Tukey test, P< 0.082) in ZT2 (8 inds.) than in ZT2 (4 inds.). On the peak day, the intracellular MC exposed to both zooplanktons was significantly higher than the control (One-way ANOVA, P< 0.021). Higher zooplankton survivals were observed in the M. aeruginosa strain (No. 111) rather than in high toxic P. agardhii strain. In the indirect experiment, the intracellular MC of the M. aeruginosa strain was significantly different among the control and zooplankton culture media filtrate (ZCMF)treatments (rm-ANOVA: P<0.004), The MC exposed ZCMF2 (50%) were significantly higher than in ZCMFI (25%: Tukey test, P< 0.025) for both strains. This study strongly supports the induced-defensive MC production of potentially toxic cyanobacteria in response to the presence of zooplankton.

Ecotoxicity Assessment of 1,4-Dioxane and Dichloromethane in Industrial Effluent Using Daphnia magna (물벼룩을 이용한 산업방류수 중 1,4-다이옥산 및 디클로로메탄의 생태독성평가)

  • Choi, Jae Won;Lee, Sun Hee;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.466-471
    • /
    • 2019
  • 1,4-dioxane and dichloromethane are classified as carcinogenic groups in the International Agency for Research on Cancer (IARC). They are frequently released at high concentrations in an industrial wastewater effluent. The acute toxicity (24 h) of Daphnia magna for 7.53 mg/L of 1,4-dioxane in the industrial effluent was evaluated as 1.1 TU (toxic unit) and showed TU close to the effluent quality standard. Mixed substances of 1,4-dioxane and dichloromethane in the industrial effluent showed relatively high TU as compared to that of a single substance. Half maximal effective concentration (24 h $EC_{50}$) values of 1,4-dioxane and dichloromethane for the synthetic wastewater prepared in laboratory were 1,744 (0.06 TU) and 170 mg/L (0.6 TU), respectively and the toxicity was low. Nevertheless the toxicological evaluation of the mixture showed that TU values increased to 0.02, 0.04 and 0.10, respectively as 1, 5 and 10 ppm of dichloromethane was added to 100 ppm of 1,4-dioxane. And the synergistic effect was observed between two substances. But the TU value of synthetic wastewater was below 5%, lower than that of industrial effluent at the similar concentration.

Toxicity test of wetland sediments by Simocephalus mixtus (국내종 물벼룩 Simocephalus mixtus에 의한 습지퇴적물 독성도 측정)

  • 이찬원;권영택;윤종섭;문성원
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.851-855
    • /
    • 2002
  • A comparison of Daphnia magna, Ceriodaphnia dubia and Simocephalus mixtus toxicity test was performed to study the relative sensitivities and discrimination abilities with both pore and elutriate water of Woopo wetland sediments. Sediment risk assessment has been done by standardized preparation method of pore and elutriate water described in the joint US EPA-US Army Crops of Engineers manual. Simocephalus mixtus which was obtained from Woopo wetlands in Korea was cultured and applied to sediment toxicity test. Water quality in Woopo wetland had great site and seasonal variations. S. mixtus was more sensitive than D. magna in heavy metal toxicity test. The toxicity results with S. mixtus reflected the water quality of elutriate and pore water. The results also suggested that S. mixtus could be used as a test organism in estimating potential risk of contaminated sediments.

Development of Continuous Water Quality Monitoring System using the Daphnid Daphnia sp. (국내산 물벼룩 Daphnia sp.를 이용한 연속적인 수질모니터링 장치 개발)

  • Yoon, Sungjin;Lee, Sungkyu;Park, Hanoh
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 2008
  • To develop the continuous water quality monitoring system using the daphnid Daphnia sp., the growth of test animal, sensitivity, and behaviour response of toxicants were observed. Growth of test animal significantly increased with increasing the food density under the 90~105 mg/L ($CaCO_3$) hardness, except the concentration of food (Chrollela sp.) was exceeded than optimal food supply. Behaviour responses of test animals were continuously analyzed by changes of fractal dimension value (FDV). The FDV sharply decreased after exposure to the concentrations of 0.13 mg/L copper, 0.06 mg/L lead, and 0.38 mg/L cadmium. In these concentrations, mortality and abnormal behaviour of daphnids exhibited within ca. 1.0-h after exposure. Comparison of 24-h $LC_{50}$ values with other zooplankton species indicated that sensitivity of the Daphnia sp. was higher than most zooplankton for lead, and brain shrimp, rotifer, and water flea (Ceriodaphnia dubia, D. magna) for copper, and brain shrimp, water flea (D. lumholzi), and amphipod for cadmium. Based on the above experimental results, significant relationship between toxicity and behaviour response of Daphnia sp. was supported the high potential of water quality monitoring system. Consequently, behavioural monitoring method in this study suggests a good estimation tool for detection of the discharged toxicants in water body and for ecotoxicological assessment aquatic organisms.