• Title/Summary/Keyword: Danger Information

Search Result 383, Processing Time 0.027 seconds

A Study on Deep Learning-based Pedestrian Detection and Alarm System (딥러닝 기반의 보행자 탐지 및 경보 시스템 연구)

  • Kim, Jeong-Hwan;Shin, Yong-Hyeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.58-70
    • /
    • 2019
  • In the case of a pedestrian traffic accident, it has a large-scale danger directly connected by a fatal accident at the time of the accident. The domestic ITS is not used for intelligent risk classification because it is used only for collecting traffic information despite of the construction of good quality traffic infrastructure. The CNN based pedestrian detection classification model, which is a major component of the proposed system, is implemented on an embedded system assuming that it is installed and operated in a restricted environment. A new model was created by improving YOLO's artificial neural network, and the real-time detection speed result of average accuracy 86.29% and 21.1 fps was shown with 20,000 iterative learning. And we constructed a protocol interworking scenario and implementation of a system that can connect with the ITS. If a pedestrian accident prevention system connected with ITS will be implemented through this study, it will help to reduce the cost of constructing a new infrastructure and reduce the incidence of traffic accidents for pedestrians, and we can also reduce the cost for system monitoring.

Fire Detection using Deep Convolutional Neural Networks for Assisting People with Visual Impairments in an Emergency Situation (시각 장애인을 위한 영상 기반 심층 합성곱 신경망을 이용한 화재 감지기)

  • Kong, Borasy;Won, Insu;Kwon, Jangwoo
    • 재활복지
    • /
    • v.21 no.3
    • /
    • pp.129-146
    • /
    • 2017
  • In an event of an emergency, such as fire in a building, visually impaired and blind people are prone to exposed to a level of danger that is greater than that of normal people, for they cannot be aware of it quickly. Current fire detection methods such as smoke detector is very slow and unreliable because it usually uses chemical sensor based technology to detect fire particles. But by using vision sensor instead, fire can be proven to be detected much faster as we show in our experiments. Previous studies have applied various image processing and machine learning techniques to detect fire, but they usually don't work very well because these techniques require hand-crafted features that do not generalize well to various scenarios. But with the help of recent advancement in the field of deep learning, this research can be conducted to help solve this problem by using deep learning-based object detector that can detect fire using images from security camera. Deep learning based approach can learn features automatically so they can usually generalize well to various scenes. In order to ensure maximum capacity, we applied the latest technologies in the field of computer vision such as YOLO detector in order to solve this task. Considering the trade-off between recall vs. complexity, we introduced two convolutional neural networks with slightly different model's complexity to detect fire at different recall rate. Both models can detect fire at 99% average precision, but one model has 76% recall at 30 FPS while another has 61% recall at 50 FPS. We also compare our model memory consumption with each other and show our models robustness by testing on various real-world scenarios.

Rolling Motion Simulation in the Time Domain and Ship Motion Experiment for Algorithm Verification for Fishing Vessel Capsizing Alarm Systems (어선전복경보시스템 알고리즘 검증을 위한 어선 횡동요 시험 및 시간영역 횡동요 시뮬레이션)

  • Yang, Young-Jun;Kwon, Soo-Yeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.956-964
    • /
    • 2017
  • This study contributes to deepening understand of the characteristics of fishing vessel rolling motions to improve the development of capsizing alarm systems. A time domain rolling motion simulation was performed. In order to verify capsizing alarm systems, it is necessary to carry out experiments assuming a capsizing situation and perform actual fishing vessel measurements, but these tasks are impossible due to the danger of such a situation. However, in many capsizing accidents, a close connection with rolling motion was found. Accordingly, the rolling motion of a fishing boat, which is the core of a fishing vessel capsizing alarm system, has been accurately measured and a time domain based on a rolling motion simulation has been performed. This information was used to verify the algorithm for a capsizing alarm system. Firstly, the characteristics of rolling motion were measured through a motion experiment. For small vessels such as fishing vessels, it was difficult to interpret viscosity due to analytical methods including CFD and potential codes. Therefore, an experiment was carried out focusing on rolling motion and a rolling mode RAO was derived.

Development on Identification Algorithm of Risk Situation around Construction Vehicle using YOLO-v3 (YOLO-v3을 활용한 건설 장비 주변 위험 상황 인지 알고리즘 개발)

  • Shim, Seungbo;Choi, Sang-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.622-629
    • /
    • 2019
  • Recently, the government is taking new approaches to change the fact that the accident rate and accident death rate of the construction industry account for a high percentage of the whole industry. Especially, it is investing heavily in the development of construction technology that is fused with ICT technology in line with the current trend of the 4th Industrial Revolution. In order to cope with this situation, this paper proposed a concept to recognize and share the work situation information between the construction machine driver and the surrounding worker to enhance the safety in the place where construction machines are operated. In order to realize the part of the concept, we applied image processing technology using camera based on artificial intelligence to earth-moving work. Especially, we implemented an algorithm that can recognize the surrounding worker's circumstance and identify the risk situation through the experiment using the compaction equipment. and image processing algorithm based on YOLO-v3. This algorithm processes 15.06 frames per second in video and can recognize danger situation around construction machine with accuracy of 90.48%. We will contribute to the prevention of safety accidents at the construction site by utilizing this technology in the future.

Unrecorded Alien Plant in South Korea: Ludwigia peploides subsp. montevidensis (Spreng.) P.H. Raven (미기록 침입외래종: 꽃여뀌바늘)

  • Kim, Hye-Won;Son, Dong Chan;Park, Soo Hyun;Jang, Chang-Seok;Sun, Eun-Mi;Jo, Hyeryun;Yun, Seok Min;Chang, Kae Sun
    • Korean Journal of Plant Resources
    • /
    • v.32 no.2
    • /
    • pp.201-206
    • /
    • 2019
  • Alien invasive species are introduced with or without intent and spreading all over Korea. They are known to have negative effects on biodiversity such as economic and environmental damage and causing decrease or loss of native species. The habitats like wetland, reservoir and riverside are especially in danger of being invaded by alien species due to stress and disturbance. Therefore, Korea National Arboretum is steadily working on research and studies on managing alien invasive species. This research aims to collect basic information of Ludwigia peploides subsp. montevidensis (Spreng.) P.H. Raven which was found near riverside in Suwon-si and is concerned to become an invasive alien species. We expect the description, diagram and pictures of this taxon will be helpful for early detection and effective management.

Crisis in Venezuela, Solitude of Latin America, the Old Future (베네수엘라 위기와 라틴아메리카의 고독 그 오래된 미래)

  • Choi, Myoung-Ho
    • Iberoamérica
    • /
    • v.21 no.2
    • /
    • pp.83-114
    • /
    • 2019
  • Now Venezuela is the most attentional country in Latin America not only in our country but also all world. Unfortunately, the current crisis is a danger that threatening the venezuelan people's right to live, so most of the news is negative. Some analysts in Korea insist that everything is the result of invasion by US imperialism, others say it is a state of default due to excessive populism. The others also described as a power game of the powers of the world by the new Cold War. But most essential thing is that Sovereign of Venezuela, Venezuelan people are marginalized in this process. Venezuela's crisis seems to have been both a combination of internal and external factors, but internal factors been a main cause. The internal factors are the dictatorship and corruption of crony capitalism of nepotism which are considered historical ailments in Latin America. Chávez criticized the oligarchy, but paradoxically, the Chávezian or current ruling forces became another oligarchy. Unfortunately, Western powers such as the United States and the EU and Venezuela's current ruling powers are at an extreme confrontation, so can be seen using cliff-edge tactics. The best solution is the free and peaceful reelection of the president. After the patriarchal winter, which spring will come the Venezuelan people must decide.

Threat Situation Determination System Through AWS-Based Behavior and Object Recognition (AWS 기반 행위와 객체 인식을 통한 위협 상황 판단 시스템)

  • Ye-Young Kim;Su-Hyun Jeong;So-Hyun Park;Young-Ho Park
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.189-198
    • /
    • 2023
  • As crimes frequently occur on the street, the spread of CCTV is increasing. However, due to the shortcomings of passively operated CCTV, the need for intelligent CCTV is attracting attention. Due to the heavy system of such intelligent CCTV, high-performance devices are required, which has a problem in that it is expensive to replace the general CCTV. To solve this problem, an intelligent CCTV system that recognizes low-quality images and operates even on devices with low performance is required. Therefore, this paper proposes a Saying CCTV system that can detect threats in real time by using the AWS cloud platform to lighten the system and convert images into text. Based on the data extracted using YOLO v4 and OpenPose, it is implemented to determine the risk object, threat behavior, and threat situation, and calculate the risk using machine learning. Through this, the system can be operated anytime and anywhere as long as the network is connected, and the system can be used even with devices with minimal performance for video shooting and image upload. Furthermore, it is possible to quickly prevent crime by automating meaningful statistics on crime by analyzing the video and using the data stored as text.

Market in Medical Devices of Blockchain-Based IoT and Recent Cyberattacks

  • Shih-Shuan WANG;Hung-Pu (Hong-fu) CHOU;Aleksander IZEMSKI ;Alexandru DINU;Eugen-Silviu VRAJITORU;Zsolt TOTH;Mircea BOSCOIANU
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.39-44
    • /
    • 2023
  • The creativity of thesis is that the significance of cyber security challenges in blockchain. The variety of enterprises, including those in the medical market, are the targets of cyberattacks. Hospitals and clinics are only two examples of medical facilities that are easy targets for cybercriminals, along with IoT-based medical devices like pacemakers. Cyberattacks in the medical field not only put patients' lives in danger but also have the potential to expose private and sensitive information. Reviewing and looking at the present and historical flaws and vulnerabilities in the blockchain-based IoT and medical institutions' equipment is crucial as they are sensitive, relevant, and of a medical character. This study aims to investigate recent and current weaknesses in medical equipment, of blockchain-based IoT, and institutions. Medical security systems are becoming increasingly crucial in blockchain-based IoT medical devices and digital adoption more broadly. It is gaining importance as a standalone medical device. Currently the use of software in medical market is growing exponentially and many countries have already set guidelines for quality control. The achievements of the thesis are medical equipment of blockchain-based IoT no longer exist in a vacuum, thanks to technical improvements and the emergence of electronic health records (EHRs). Increased EHR use among providers, as well as the demand for integration and connection technologies to improve clinical workflow, patient care solutions, and overall hospital operations, will fuel significant growth in the blockchain-based IoT market for linked medical devices. The need for blockchain technology and IoT-based medical device to enhance their health IT infrastructure and design and development techniques will only get louder in the future. Blockchain technology will be essential in the future of cybersecurity, because blockchain technology can be significantly improved with the cybersecurity adoption of IoT devices, i.e., via remote monitoring, reducing waiting time for emergency rooms, track assets, etc. This paper sheds the light on the benefits of the blockchain-based IoT market.

A Study on Changes in Seafarers Functions and Manpower Training by the Introduction of Maritime Autonomous Surface Ships (자율운항선박 도입에 따른 선원직능 변화와 인력양성에 관한 연구)

  • Sung-Ju Lim;Yong-John Shin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.78-80
    • /
    • 2021
  • This study is based on Degree of Recognition and AHP surveys for experts, this study investigates changes in the demand of seafarers in response to changes in the shipping industry environment in which Maritime Autonomous Surface Ships(MASS) emerge according to the application of the fourth industrial revolution technology to ships, and it looks into changes in seafarers' skills. It also analyzes and proposes a plan for cultivating seafarers accordingly. As a result of Degree of Recognition and AHP analysis, it is analyzed that a new training system is required because the current training and education system may cover the job competencies of emergency response, caution and danger navigation, general sailing, cargo handling, seaworthiness maintenance, emergency response, and ship maintenance and management, but jobs such as remote control, monitoring diagnosis, device management capability, and big data analysis require competency for unmanned and shore based control.By evaluating the importance of change factors in the duties of seafarers in Maritime Autonomous Surface Ships, this study provides information on seafarers educational institutions response strategies for nurturing seafarers and prioritization of resource allocation, etc. The importance of factors was compared and evaluated to suggest changes in the duties of seafarers and methods of nurturing seafarers according to the introduction of Maritime Autonomous Surface Ships.It is expected that this study is meaningful as it systematically derived the duties and competency factors of seafarers of Maritime Autonomous Surface Ships from a practical point of view and analyzed the perception level of each relevant expert to diagnose expert-level responses to the introduction of Maritime Autonomous Surface Ships.

  • PDF

A Research on Applicability of Drone Photogrammetry for Dam Safety Inspection (드론 Photogrammetry 기반 댐 시설물 안전점검 적용성 연구)

  • DongSoon Park;Jin-Il Yu;Hojun You
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.30-39
    • /
    • 2023
  • Large dams, which are critical infrastructures for disaster prevention, are exposed to various risks such as aging, floods, and earthquakes. Better dam safety inspection and diagnosis using digital transformation technologies are needed. Traditional visual inspection methods by human inspectors have several limitations, including many inaccessible areas, danger of working at heights, and know-how based subjective inspections. In this study, drone photogrammetry was performed on two large dams to evaluate the applicability of digital data-based dam safety inspection and propose a data management methodology for continuous use. High-quality 3D digital models with GSD (ground sampling distance) within 2.5 cm/pixel were generated by flat double grid missions and manual photography methods, despite reservoir water surface and electromagnetic interferences, and severe altitude differences ranging from 42 m to 99.9 m of dam heights. Geometry profiles of the as-built conditions were easily extracted from the generated 3D mesh models, orthomosaic images, and digital surface models. The effectiveness of monitoring dam deformation by photogrammetry was confirmed. Cracks and deterioration of dam concrete structures, such as spillways and intake towers, were detected and visualized efficiently using the digital 3D models. This can be used for safe inspection of inaccessible areas and avoiding risky tasks at heights. Furthermore, a methodology for mapping the inspection result onto the 3D digital model and structuring a relational database for managing deterioration information history was proposed. As a result of measuring the labor and time required for safety inspection at the SYG Dam spillway, the drone photogrammetry method was found to have a 48% productivity improvement effect compared to the conventional manpower visual inspection method. The drone photogrammetry-based dam safety inspection is considered very effective in improving work productivity and data reliability.