• Title/Summary/Keyword: Damping treatment

Search Result 169, Processing Time 0.026 seconds

An Optimal Placement of passive Constrained Layer Damping Treatment for Vibration Suppression of Automotive Roof (차량루프의 진동저감을 위한 수동구속감쇠처리의 위치 최적화)

  • Lee, Ki-Hwa;Kim, Chan-Mook;Kang, Young-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.349-353
    • /
    • 2004
  • A study on optimal placement of constrained layer damping treatment for vibration control of automotive panels is presented. The effectiveness of damping treatment depends upon design parameters such as choice of damping materials, locations and size of the treatment. This paper proposes a CAE (Computer Aided Engineering) methodology based on finite element analysis to optimize damping treatment. From the equivalent modeling technique, it is found that the best damping performance occurs as the viscoelstic patch is placed by means of the modal strain energy method of bare structural panels to identify flexible regions, which in turn facilitates optimizations of damping treatment with respect to location and size. Different configurations of partially applied damping layer treatment have been analyzed for their effectiveness in realizing maximum system damping with minimum mass of the applied damping material. Moreover, simulated frequency response function of the automotive roof with and without damping treatments are compared, which show the benefits of applying damping treatment. Finally, the optimized damping treatment configuration is validated by comparing the locations and the size of the treatment with that of an experimental modal test conducted on roof compartment.

  • PDF

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (동적응답을 최소화하는 비구속형 제진보의 제진부위 최적설계)

  • Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.656-661
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beams is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. The loss factors of partially covered unconstrained beam are calculated by the modal strain energy method. Vibration responses are calculated by using the modal superposition method, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in minimizing vibration responses with unconstrained damping layer treatment.

  • PDF

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (진동응답을 최소화하는 비구속형 제진보의 제진 부위 최적설계)

  • Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.829-835
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beam is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. Vibration responses are calculated by using the modal superposition principle, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in suppressing nitration responses by means of unconstrained damping layer treatment.

Strain Amplitude Dependence of Damping Capacity in Mg-AI-Si Alloy (Mg-Al-Si 합금에서 진동감쇠능의 변형진폭 의존성)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.3
    • /
    • pp.144-148
    • /
    • 2011
  • Change in damping capacity with strain amplitude was studied in Mg-Al-Si alloy in as-cast, solution-treated and aged states, respectively. The as-cast microstructure of the alloy is characterized by eutectic ${\beta}$($Mg_{17}Al_{12}$) phase and Chinese script type $Mg_2Si$ particles. The solution treatment dissolved the ${\beta}$ phase into the matrix, while the aging treatment resulted in the distribution of continuous and discontinuous type ${\beta}$ precipitates. The solution-treated microstructure showed better damping capacity than as-cast and aged microstructures both in strain-dependent and strain-independent damping regions. The decrease in second-phase particles which weakens the strong pinning points on dislocations and distribution of solute atoms in the matrix, would be responsible for the enhanced damping capacity after solution treatment.

Effect of Thermo-Mechanical Treatment on the Damping Capacity of Alloy with Deformation Induced Martensite Transformation (가공유기 마르텐사이트 변태를 갖는 합금의 감쇠능에 미치는 가공열처리의 영향)

  • Han, Hyun-Sung;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.160-166
    • /
    • 2019
  • This study investigates the effect of thermo-mechanical treatment on the damping capacity of the Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. Dislocation, ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ are formed, and the grain size is refined by deformation and thermo-mechanical treatment. With an increasing number cycles in the thermo-mechanical treatment, the volume fraction of ${\varepsilon}-martensite$ increases and then decreases, whereas dislocation and ${\alpha}^{\prime}-martensite$ increases, and the grain size is refined. In thermo-mechanical treated specimens with five cycles, more than 10 % of the volume fraction of ${\varepsilon}-martensite$ and less than 3 % of the volume fraction of ${\alpha}^{\prime}-martensite$ are attained. Damping capacity decreases by thermo-mechanical treatment and with an increasing number of cycles of thermo-mechanical treatment, and this result shows an opposite tendency for general metal with deformation induced martensite transformation. The damping capacity of the thermo-mechanical treated damping alloy with deformation induced martensite transformation greatly affect the formation of dislocation, grain refining and ${\alpha}^{\prime}-martensite$ and then ${\varepsilon}-martensite$ formation by thermo-mechanical treatment.

Effect of Subzero Treatment on the Damping Capacity of Austempered Ductile Cast Iron (오스템퍼드 구상흑연주철의 감쇠능에 미치는 서브제로 처리의 영향)

  • Kang, Chang-Yong;Jo, Duck-Ho;Kim, Yun-Kyu;Han, Hyun-Sung;Lee, Hae-Woo;Sung, Jang-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.169-174
    • /
    • 2009
  • The effect of sub zero treatment on the damping capacity in austempered ductile cast iron investigated. Austenite transformed in to martensite by subzero treatment, and with the decrease of subzero treatment temperature, volume fraction of martensite increased. Damping capacity of austempered ductile cast iron was highly increased by subzero treatment, with the decrease of subzero treatment temperature, damping capacity was slowly increased. With the decrease of subzero treatment time, damping capacity was rapidly increased to 30 min. and then slowly increased. With the increase of volume fraction of martensite, damping capacity rapidly increasing to 5% and then slowly increased.

Effect of Annealing Conditions on Microstructure and Damping Capacity in AZ61 Magnesium Alloy (열처리조건에 따른 AZ61 마그네슘 합금의 미세조직과 감쇠능에 미치는 영향)

  • Ahn, Jae-Hyeon;Kim, Kwon-Hoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.2
    • /
    • pp.56-62
    • /
    • 2018
  • Many researchers have studied on the precipitation control after solution treatment to improve the damping capacity without decreasing the strength. However, studies on the damping capacity and microstructure changes after deformation in the solid solution strengthening alloys were inadequate, such as the Al-Zn series magnesium alloys. Therefore, in order to investigate the effect of annealing condition on microstructure change and damping a capacity of AZ61 magnesium alloy. In this study, it was confirmed that the microstructure changes affect the damping capacity and hardness when annealed AZ61 alloy. AZ61 magnesium alloy was rolled at $400^{\circ}C$ with rolling reduction of 30%. These specimens were annealed at $350^{\circ}C$ to $450^{\circ}C$ for 30-180 minutes. After annealing, microstructure was observed by using optical microscopy, and damping capacity was measured by using internal friction measurement machine. Hardness was measured by Vickers hardness tester under a condition of 0.3 N. In this study, static recrystallization was observed regardless of the annealing conditions. In addition, uniform equiaxed grain structure was developed by annealing treatment. Hardness is decreased with increasing grain size. This is associated with Hall-Petch equation and static recrystallization. In case of damping capacity, bigger grain size show the larger damping capacity.

Application of Strain Energy for Determining the Location of Damping Material (스트레인 에너지를 이용한 제진재 위치 결정)

  • Kim, Joong-Bae;Ryu, Kuk-Hyun;Park, Sang-Kyu;Lee, Sang-Jo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1199-1205
    • /
    • 2008
  • The vehicle design engineers have studied the method of applying damping materials to the vehicle bodies by computer simulations and experimental methods in order to improve the vibration and noise characteristics of the vehicles. The unconstrained layer damping, being concerned with this study, has two layers(base layer and damping layer) and proyides vibration control of the base layer through extensional damping. Generally this kind of surface damping method is effectively used in reducing structural vibration at frequencies beyond 150Hz. The most important thing is how to apply damping treatment with respect to location and size of the damping material. To solve these problems, the current experimental methods have technical limits which are cumbersome, time consuming, and expensive. This Paper proposes a method based on finite element method and it employes averaged ESE(element strain energy) percent of total of dash panel assembly for 1/1 octave band frequency range by MSC/NASTRAN. The regions of high ESE percent of total are selected as proposed location of damping treatment. The effect of damping treatment is analyzed by comparing the frequency response function of the SPCC bare Panel and the damping treated panels.

RDVM Topology Optimization for Optimal Damping Treatment (점탄성물질 위치 최적화를 위한 설계변수감소 위상최적설계 기법)

  • Sun Yong, Kim
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.72-79
    • /
    • 2017
  • A full treatment of damping material is not an effective method because the damping effect is not significantly increased compared to that obtained by an effective partial damping treatment. Thus, a variety of methodologies has been considered in order to achieve an optimal damping treatment. One of the widely applied approaches is topology optimization. However, the high computational expenses can be an issue in topology optimization. A new efficient convergence criterion, reducible design variable method (RDVM), is applied to reduce computational expense in topology optimization. The idea of RDVM topology optimization is to adaptively reduce the number of design variables based on the history. The iteration repeats until the number of design variables becomes zero. The aim of this research is to adopt RDVM topology optimization into obtaining an optimal damping treatment. In order to demonstrate the effectiveness and efficiency of RDVM topology optimization, optimal damping layouts and computational expenses are compared between conventional and RDVM topology optimization.

Damping Capacity of Heat-Treated Mg-Nd Alloy (열처리한 Mg-Nd 합금의 진동감쇠능)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.4
    • /
    • pp.185-190
    • /
    • 2013
  • Influence of solution treatment (T4) and peak-aging (T6) on damping capacity was investigated in permanent-mold cast Mg-3%Nd alloy. In as-cast state, the microstructure was characterized by eutectic $Mg_{12}Nd$ intermetallic phase network in the intergranular region. T4 treatment resulted in a dissolution of the eutectic particles, but small amount of the particles still remained in the microstructure. After T6 treatment, nano-sized ${\beta}^{\prime}(Mg_{12}Nd)$ particles were precipitated within the matrix. T4 microstructure showed higher damping capacity than as-cast and T6 ones. In view of the microstructural features, this may well be associated with the dissolution of second-phase particles which play a role in pinning the dislocations acting as a damping source.