• 제목/요약/키워드: Damping effects

검색결과 866건 처리시간 0.026초

감쇠계수 산출을 위한 자유 횡동요 감쇠실험 연구 (Experimental Study of the Free Roll Decay Test for the Evaluation of Roll Damping Coefficients)

  • 김남우;김용직;하영록
    • 대한조선학회논문집
    • /
    • 제52권6호
    • /
    • pp.460-470
    • /
    • 2015
  • In general ships and FPSOs, roll damping is very small and consequently roll motion is very large at the roll resonance frequency. Proper evaluation of the roll damping coefficient at the resonance frequency is an important task in the study of roll motion and usually it is done by the analysis of free roll decay tests. The relative decrement method based on energy relation has been used mainly for the evaluation of roll damping coefficient from the roll decay test so far. As another method, the logarithmic decrement method based on equivalent linear decay assumption can be used for the same purpose and it is relatively simple. In this paper, both of the relative decrement method and the logarithmic decrement method are used for the evaluation of roll damping coefficient including quadratic damping from the free roll decay tests, and their results are cross-checked for verifying the obtained damping coefficients. Through applications to a box-type floating body equiped with bilge keels, it is shown that the two methods give almost the same damping coefficients in a practical view point and the cross-check of their results is to be a good tool to prevent a possible error. And also the quantitative effects of the bilge keels on the roll damping of box-type floating body are shown and discussed.

Fe-17%Mn 합금의 진동감쇠능에 미치는 ε 마르텐사이트 함량과 진폭변형율의 영향 (Effect of ε Martensite Content and Strain Amplitude on Damping Capacity of Fe-17%Mn Alloy)

  • 전중환;이영국;최종술
    • 열처리공학회지
    • /
    • 제9권2호
    • /
    • pp.112-120
    • /
    • 1996
  • The effects of ${\varepsilon}$ martensite content and strain amplitude on damping capacity of an Fe-17%Mn alloy have been studied to establish damping mechanism of Fe-Mn system corresponding to the magnitude of strain amplitude. In a range of $1{\times}10^{-4}{\sim}3{\times}10^{-4}$ strain amplitude, the damping capacity is linearly proportional to the ${\varepsilon}$ martensite content, which suggests that stacking faults and ${\varepsilon}$ martensite variant boundaries are the principal damping sources. In the range of $4{\times}10^{-4}{\sim}6{\times}10^{-4}$ strain amplitude, however, a maximum damping capacity is observed around 68 vol.% ${\varepsilon}$. This behavior is very similar to dependence of relative area of ${\gamma}/{\varepsilon}$ interface on ${\varepsilon}$ martensite content. This means that in this strain range, ${\gamma}/{\varepsilon}$ interface acts as damping source in addition to the stacking faults and variant boundaries in Fe-17%Mn alloy.

  • PDF

횡방향 가력실험 및 충격실험을 통한 강판콘크리트(SC) 전단벽의 감쇠비 평가 (Investigation of Damping Ratio of Steel Plate Concrete (SC) Shear Wall by Lateral Loading Test & Impact Test)

  • 조성국;소기환;박웅기
    • 한국지진공학회논문집
    • /
    • 제17권2호
    • /
    • pp.79-88
    • /
    • 2013
  • Steel plate concrete (SC) composite structure is now being recognized as a promising technology applicable to nuclear power plants as it is faster and suitable for modular construction. It is required to identify its dynamic characteristics prior to perform the seismic design of the SC structure. Particularly, the damping ratio of the structure is one of the critical design factors to control the dynamic response of structure. This paper compares the criteria for the damping ratios of each type of structures which are prescribed in the regulatory guide for the nuclear power plant. In order to identify the damping ratio of SC shear wall, this study made SC wall specimens and conducted experiments by cyclic lateral load tests and vibration tests with impact hammer. During the lateral loading test, SC wall specimens exhibited large ductile capacities with increasing amplitude of loading due to the confinement effects by the steel plate and the damping ratios increased until failure. The experimental results show that the damping ratios increased from about 6% to about 20% by increasing the load from the safe shutdown earthquake level to the ultimate strength level.

Nonlinear effects in solution NMR: A numerical study on dynamics of dipolar demagnetizing field and radiation damping

  • Sangdoo Ahn;Lee, Sanghyuk
    • 한국자기공명학회논문지
    • /
    • 제3권2호
    • /
    • pp.71-83
    • /
    • 1999
  • The dynamics of the dipolar demagnetizing field is investigated by numerical simulation. The effects of radiation damping, molecular diffusion, and relaxation processes on the dipolar demagnetizing field are examined in terms of the modulation pattern of the z-magnetization and the signal intensity variation. Simulations for multi-components suggest applications for sensitivity enhancement in favorable conditions.

  • PDF

PSS Tuning시 위상보상이 계통안정도에 미치는 영향 분석 (An Analysis on Effects of Phase Compensation on Power System Stability in the PSS Parameter Tuning)

  • 김태균;신정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1147-1149
    • /
    • 1998
  • This paper presents the result of an analysis on effects of phase compensation on power system stability in the PSS parameter tuning. Synchronizing and damping coefficients are induced from lineal model for generator with PSS. Synchronizing and damping coefficients corresponding to time constants of phase compensation control block are calculated on a single machine, infinite bus test system. The Parameter tuning concepts, basic function, structural elements and performance criteria of PSS are introduced.

  • PDF

A simple damper optimization algorithm for both target added damping ratio and interstorey drift ratio

  • Aydin, Ersin
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.83-109
    • /
    • 2013
  • A simple damper optimization method is proposed to find optimal damper allocation for shear buildings under both target added damping ratio and interstorey drift ratio (IDR). The damping coefficients of added dampers are considered as design variables. The cost, which is defined as the sum of damping coefficient of added dampers, is minimized under a target added damping ratio and the upper and the lower constraint of the design variables. In the first stage of proposed algorithm, Simulated Annealing, Nelder Mead and Differential Evolution numerical algorithms are used to solve the proposed optimization problem. The candidate optimal design obtained in the first stage is tested in terms of the IDRs using linear time history analyses for a design earthquake in the second stage. If all IDRs are below the allowable level, iteration of the algorithm is stopped; otherwise, the iteration continues increasing the target damping ratio. By this way, a structural response IDR is also taken into consideration using a snap-back test. In this study, the effects of the selection of upper limit for added dampers, the storey mass distribution and the storey stiffness distribution are all investigated in terms of damper distributions, cost function, added damping ratio and IDRs for 6-storey shear building models. The results of the proposed method are compared with two existing methods in the literature. Optimal designs are also compared with uniform designs according to both IDRs and added damping ratios. The numerical results show that the proposed damper optimization method is easy to apply and is efficient to find optimal damper distribution for a target damping ratio and allowable IDR value.

음향공 오리피스 길이 변화에 따른 감쇠 효과 (Effects of Orifice Length on Helmholtz Resonator)

  • 송재강;고영성
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.36-39
    • /
    • 2008
  • 연소 불안정 현상은 액체로켓엔진 개발과정에 있어서 반드시 해결해야 하는 문제이다. 이것을 억제하기 위한 도구 중의 하나인 음향공의 오리피스 길이 변화에 의한 감쇠 효과를 선형 음향 해석과 실험을 통하여 연구하였다. 오리피스의 길이가 짧아질수록 감쇠효과가 증가하는 것을 확인하였으며 실험과 선형 음향 해석 결과가 서로 동일한 경향을 보이는 것을 확인 하였다. 또한, 가진 음원의 크기에 따른 실험을 수행하였는데 그 결과 오리피스 길이와 단면적이 작아질수록 가진 음원의 크기 증가의 따른 비선형성이 증가하는 것을 확인하였다.

  • PDF

감쇠진동계에 부착된 복합동흡진기의 효과에 관한 연구 (A Study on the Effects of Dual Dynamic Vibration Absorber for Damped Vibration System)

  • 안찬우;최석창;김동영
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.1039-1048
    • /
    • 1997
  • This paper describes the effects of dual dynamic vibration absorbers attached to a primary vibration system with damping. The efficiency of dual dynamic vibration absorbers was investigated with the height of amplitude ratio at the resonance frequency ratio of the damped vibration system according to mass ratio, natural frequency ratio and damping ratio. The variation of amplitude ratio related to frequency ratio of primary vibration system is verified experimentally and theoretically according to dual dynamic vibration systems using computer program designed to find mutual relationship between two absorbers.

  • PDF

무베어링 헬리콥터 주 로터의 허브 파라미터 변화에 따른 로터 안정성 특성 해석 (Hub Parametric Investigation of Main Rotor Stability of Bearingless Helicopter)

  • 윤철용;기영중;김태주;김덕관;김승호
    • 한국소음진동공학회논문집
    • /
    • 제22권8호
    • /
    • pp.784-790
    • /
    • 2012
  • This paper describes a stability and dynamic characteristics of bearingless helicopter main rotor in hover. Baseline rotor configuration is defined and modal analysis for the configuration is taken to verify the dynamic characteristics. The kinematic pitch-lag couplings through ways of pitch link installation are analyzed to know effects on loads, frequencies and stability. The effects of pitch link attachments in spanwise direction and chordwise direction as well as pitch link inclination on thrust, power, flpa-lag-pitch mode frequencies and inplane damping are examined. Pitch link at trailing edge location in chordwise direction has influence on aeroelastic stability of the rotor. Also, the pitch link with negative inclination angle makes inplane damping increase.

이중범프포일 공기베어링의 성능에 미치는 마찰효과 (Friction Effects on the Performance of Double-Bumped Air Foil Bearings)

  • 김영철;이동현;김경웅
    • Tribology and Lubricants
    • /
    • 제23권4호
    • /
    • pp.162-169
    • /
    • 2007
  • This paper deals with friction effects on the performance of double-bumped AFBs. The stiffness and damping coefficients of the double bump vary depending on the external load and its friction coefficient. The double bump can be either in the single or double active region depending on vertical deflection. The equivalent stiffness and damping coefficients of the bump system are derived from the vertical and horizontal deflection of the bump, including the friction effect. A static and dynamic performance analysis is carried out by using the finite difference method and the perturbation technique. The results of the performance analysis for a double-bumped AFB are compared with those obtained for a single-bumped AFB. This paper successfully proves that a double bumped AFB has higher load capacity, stiffness, and damping than a single-bumped AFB in a heavily loaded condition.