• Title/Summary/Keyword: Damping Resistance

Search Result 151, Processing Time 0.022 seconds

Mitigating Seismic Response of the RC Framed Apartment Building Structures Using Stair-Installation Kagome Damping System (계단 설치형 카고메 감쇠시스템을 활용한 철근콘크리트 라멘조 공동주택의 지진응답 개선)

  • Hur, Moo-Won;Chun, Young-Soo;Lee, Sang-Hyun;Hwang, Jae-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.23-30
    • /
    • 2018
  • Recently, there are highly interests on structural damping to improve resistance of seismic and wind. It has been frequently used hysteresis damping devices made of steel because of economic efficiency, construction, and maintenance. This paper presents the effective reduction of seismic response by using Kagome damping system(SKDS) in rahmen system apartment building. The proposed system is designed to be activated by the relative displacement between the building and the stairs. It is performed nonlinear dynamic analysis to review the effects of earthquake response reduction for the 20-stories rahmen framed apartment building. In the analysis of the SKDS system, the reduction of maximum response displacement, maximum response acceleration and layer shear force are compared with the seismic design, and the result show that allowable story displacement is satisfied with Korean Building Code (KBC 2016).

An Experimental Study on the Machinability Influenced by Coated and Uncoated Tips, and Damping Device in Turning (선삭에 있어서의 피복, 비피복팁 및 방진장치가 절삭성에 미치는 영향에 관한 실험적 연구)

  • Nam, Joon-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.2
    • /
    • pp.62-75
    • /
    • 1986
  • An experimental investigation of the machining characteristics such as cutt- ing resistance, surface roughness and tool wear in turning the test pieces of SM45C steel with both coated and uncoated carbide tool tips under various cutting conditions was conducted. Also a specially designed simple vibration damping device was experimentally evaluated for its effectiveness on machined surface roughness and a vibration test was conducted to confirm its ability to reduce the amplitude. Based on these tests finding, the following conclusions are made; 1. The cutting resistance($\textrm{p}_{1}$) increases as the depth of cut(d) increases at fixed feed rate(f) over the cutting speed(v) range of 43-226 m/min and p decreses about 18% average when V is increased for fixed d and f. At V= 226m/min, $\textrm{p}_{1}$/for A, C tips are about the same level but $\textrm{p}_{1}$ for B tip is 15% less than A, C tips. 2. The specific cutting resistance(Ks) at V=226 m/min was derived for A, B, C tips respectively and the value of Ks for B rip is about 20% less than A, C tips. 3. The surface roughness(Ra) improves significantly as the cutting speed(V) is increased and this effect was greater when V>100 m/min. On the other hand, Ra deteriorates as the feed rate(f) is increased and this trend was accelerated when f>0.3 mm/rev. With regard to the difference of Ra values among A, B, C tips, at V=226m/min, d=0.4mm, and f=0.31-0.61mm/rev, Ra values for B.C tips are about 17% less than tip A. 4. The experimental tool wear equations were derived for A, B, C tips and from these equations, the tool life($\textrm{T}_{\textrm{L}}$) baced on the I.S.O. criteria was calculated to be $\textrm{T}_{\textrm{L}}$<$\textrm{T}_{\textrm{LB}}$<$\textrm{T}_{\textrm{LC}}$ for both flank wear($\textrm{V}_{\textrm{B}}$) and boundary wear($\textrm{V}_{\textrm{N}}$). Hence, the coated tips are superior to the uncoated tip and tip C is considered to be the best. 5. The cutting resistance may be slightly reduced and the surface rounghness improved when the damper is used especially when V>100 m/min. Therefore this damping device is considered to be effective and practical. The experimental surface roughness equations were also derived. Based on the vibration test, it is established that the surface roughness improvement was the result of amplitude reduction made possible by the damper.

  • PDF

Measurement of the Slider-Disk Contact during Load/Unload process with AE and Electrical Resistance (Load/Unload 시 AE 와 전기저항을 이용한 슬라이더-디스크 충돌측정에 관한 연구)

  • Kim, Seok-Hwan;Lee, Yong-Hyun;Lim, Soo-Cheol;Park, Kyoung-Su;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.4
    • /
    • pp.160-166
    • /
    • 2007
  • In this paper, the measured electrical resistance method is proposed to analyze the ramp-tab contact during the load/unload (L/UL) process. Since this method supplies the voltage change due to the resistance change, we can easily and conveniently identify the ramp-tab contact from the acoustic emission (AE) signal. At first, we carefully deposit the conductive material on the surface of the conventional ramp by sputtering method. The ratio frequency (RF) magnetron co-sputtering system is applied to accomplish the deposited double-layers on the ramp surface. One layer is the stainless steel for the conductive layer and the other is the titanium layer for the cohesive function between the ramp surface and the stainless steel layer. In order to guarantee the stiffness and damping properties of the original ramp, the deposited conductive layer is intended to have very thin thickness. After integration the proposed ramp device into the L/UL system and networking the electrical resistance circuit, the L/UL performance is experimentally evaluated by comparing the measured electrical resistance signal and AE signal.

  • PDF

An Effect of Numerical Region with High Resolution for Kelvin Wave on Ship Resistance (선체 주위 파에 대한 고정도 모사가 선체 저항에 미치는 영향)

  • Kang, Min Jae;Oh, Seok Hwan;Kim, Chan Woo;Yoon, Mi Jin;Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.278-286
    • /
    • 2020
  • Reynolds-averaged Navier-Stokes simulations have been performed to investigate an effect of numerical region with high resolution for Kelvin wave around KRISO container ship on its resistance. In the present study, 13 millions cells were used to describe wave profile along the ship hull and Kelvin wave patterns. In order to control a size of numerical region with high resolution for waves around the hull, we employed relaxation zones from a side boundary of numerical domain in which Kelvin wave was suppressed. When the far-field Kelvin wave was not precisely resolved due to the relaxation zone, the instantaneous history of ship resistance was affected although the time average of ship resistance showed -1.15~2.1 % errors. Especially, the damping characteristics of ship resistance in time history was significant when using a large relaxation zone in the side boundary.

Design Methodology of Passive Damped LCL Filter Using Current Controller for Grid-Connected Three-Phase Voltage-Source Inverters

  • Lee, Jun-Young;Cho, Young-Pyo;Kim, Ho-Sung;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1178-1189
    • /
    • 2018
  • In grid-connected voltage-source inverters (VSIs), when compared with a simple inductive L filter, the LCL filter has a better performance in attenuating the high frequency harmonics caused by the pulse-width modulation of power switches. However, the resonance peaks generated by the filter inductors and capacitors can make a system unstable. In terms of simplicity and filter design cost, a passive damping method is generally preferred. However, its high power loss and degradation in high frequency harmonic attenuation are significant demerits. In this paper, a mathematical design solution for a passive LCL filter to derive filter parameters suppressing the high frequency current harmonics to 0.3% is proposed. The minimum filter inductance can be obtained to reduce the size of the filter. Furthermore, a minimum damping resistance design considering a current controller is analyzed for a stable closed-loop system. The proposed design method is verified by experimental results using a 5-kW three-phase prototype inverter.

A Study on the Torque Characteristics of Rotary Dampers (로터리 댐퍼의 토오크 특성에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.87-92
    • /
    • 2019
  • Rotary dampers are damping devices which provide high resistance to shaft rotation. Rotary dampers are being used in various areas to enable the gentle opening and closing of the rotation motion relative to home furniture, industry machinery and automotive parts. Rotary dampers can be installed directly at the rotating point of a various part and can achieve uniform, gentle movement which increases quality and value of products. And generally, the silicone fluid is used as the damping medium because of its stable viscous properties. The movement of these little decelerators can be achieved with a high viscosity of working fluid and throttles installed in the body of the rotary damper. The damping force can be achieved clockwise, anti-clockwise or in both directions according to the structure of the orifices or throttles. In this paper, the torque performances of the rotary damper containing air in the working fluid were studied. For this purpose, the torque characteristic of the rotary damper according to the variation of various operating conditions such as clearance of leakage, dimensions of groove orifice, content ratio of air, etc., were simulated with AMEsim software.

Performance Evaluation of Response Reduction of Outrigger Damper System Subjected to Wind Loads (풍하중에 대한 아웃리거 댐퍼시스템의 응답 제어 성능 평가)

  • Kim, Su-Jin;Kim, Min-Ju;Kim, Jun-Il;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.35-42
    • /
    • 2018
  • The outrigger damper system is a structural system with excellent lateral resistance when a wind load occurs. However, research on outrigger dampers is still in its infancy. In this study, dynamic response control performance of damper is analyzed according to change of stiffness value and damping value of damper. To do this, a real-scale 3D model of 50 stories has been developed and the artificial wind load has been entered for dynamic analysis. Generally, the larger the damping value, the smaller the stiffness value is, the more effective it is to reduce the maximum displacement and acceleration response. However, the larger the attenuation value as the cost of construction increases, it is necessary to select appropriate stiffness and damping value when applying an outrigger damper.

An Improved Multi-Tuned Filter for High Power Photovoltaic Grid-Connected Converters Based on Digital Control

  • Sun, Guangyu;Li, Yongli;Jin, Wei
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.160-170
    • /
    • 2018
  • For high power photovoltaic (PV) grid-connected converters, high order filters such as multi-tuned filters and Traps+RC filters with outstanding filtering performance have been widely researched. In this paper, the optimization of a multi-tuned filter with a low damping resistance and research on its corresponding control scheme have been combined to improve the performance of the proposed filter. Based on the characteristics of the switching harmonics produced by PWM, the proposed filter is optimized to further improve its filtering performance. When compared with the more common Traps+RC filter, the advantages of the proposed filter with low damping resistances in attenuating the major switching harmonics have been demonstrated. In addition, a simpler topology and reduced power loss can be achieved. On the other hand, to make the implementation of the proposed filter possible, on the base of the unique frequency response characteristic of the proposed filter, a digital single-loop control scheme has been proposed. This scheme is a simple and effective means to suppress the resonance peak caused by a lack of damping. Therefore, a smaller volume, better efficiency of the proposed filter, and easy implementation of the corresponding control scheme can be realized. Finally, the superiority of the proposed filter topology and control scheme is verified in experiments.

Effect of Intraoperative Deep Brain Stimulation on Viscoelastic Properties of Parkinsonian Rigidity during Surgery (파킨슨성 경직의 점탄성에 대한 수술중의 뇌심부 자극의 효과)

  • Kwon, Yu-Ri;Eom, Gwang-Moon;Park, Sang-Hun;Kim, Ji-Won;Koh, Seong-Beom;Park, Byung-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.1035-1040
    • /
    • 2012
  • Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been found to be effective treatment of Parkinson's disease (PD). This study aims to evaluate the effect of DBS for rigidity during DBS surgery. Six Parkinsonian patients who received STN-DBS surgery participated in this study. The examiner imposed flexion and extension of a patient's wrist randomly. Resistance to passive movement was quantified by viscoelastic properties (two damping constants for each of flexion and extension phase and one spring constant throughout both phases). All Viscoelastic constants decreased by DBS (p<0.01). Specifically, reduction in damping constant during flexion ($B_f$) was greater than those of damping constant during extension ($B_e$) and of spring constant (p<0.05). $B_f$ would be appropriate for evaluation of effect of DBS for rigidity during DBS surgery.

Analysis of added resistance of a ship advancing in waves (파랑중에서 전진하는 선박의 부가저항 해석)

  • 이호영;곽영기
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • This paper presents theoretical formulations and numerical computations for predicting first-and second-order hydrodynamic force on a ship advvancing in waves. The theoretical formulation leads to linearized radiation and diffration problems solving the three-dimensional Green function integral equations over the mean wetted body surface. Green function representing a translating and pulsating source potantial for infinite water depth is used. In order to solve integral equations for three dimentional flows using Green function efficiently, the Hoff's method is adopted for numerical calculation of the Green function. Based on the first-order solution, the mean seconder-order forces and moments are obtained by directly integrating second-order pressure over the mean wetted body surface. The calculated items are carried out for analyzing the seakeeping characteristics of Series 60. The calculated items are hydrodynamic coefficients, wave exciting forces, frequency response functions and addd resistance in waves.

  • PDF