• Title/Summary/Keyword: Damping Factor

검색결과 493건 처리시간 0.023초

Experimental study on the compressive stress dependency of full scale low hardness lead rubber bearing

  • Lee, Hong-Pyo;Cho, Myung-Sug;Kim, Sunyong;Park, Jin-Young;Jang, Kwang-Seok
    • Structural Engineering and Mechanics
    • /
    • 제50권1호
    • /
    • pp.89-103
    • /
    • 2014
  • According to experimental studies made so far, design formula of shear characteristics suggested by ISO 22762 and JEAG 4614, representative design code for Lead Rubber Bearing(LRB) shows dependence caused by changes in compressive stress. Especially, in the case of atypical special structure, such as a nuclear power structure, placement of seismic isolation bearing is more limited compared to that of existing structures and design compressive stress is various in sizes. As a result, there is a difference between design factor and real behavior with regards to shear characteristics of base isolation device, depending on compressive stress. In this study, a full-scale low hardness device of LRB, representative base isolation device was manufactured, analyzed, and then evaluated through an experiment on shear characteristics related to various compressive stresses. With design compressive stress of the full-scale LRB (13MPa) being a basis, changes in shear characteristics were analyzed for compressive stress of 5 MPa, 10 MPa, 13 MPa, 15 MPa, and 20 MPa based on characteristics test specified by ISO 22762:2010 and based on the test result, a regression analysis was made to offer an empirical formula. With application of proposed design formula which reflected the existing design formula and empirical formula, trend of horizontal characteristics was analyzed.

천연섬유/천연고무 복합재료의 특성에 미치는 Kenaf 섬유함량의 영향 (Effect of Kenaf Fiber Loading on the Properties of Natural Fiber/Natural Rubber Composites)

  • 조이석;조동환
    • Elastomers and Composites
    • /
    • 제46권3호
    • /
    • pp.186-194
    • /
    • 2011
  • 셀룰로오스계 천연섬유인 kenaf를 천연고무와 함께 균일하게 배합한 후 압축성형 방법을 사용하여 천연섬유/천연고무 복합재료를 제조하였으며, 이들의 가황거동, 경도, 인장특성, 인열강도 및 정적, 동적 특성에 미치는 kenaf 섬유함량의 영향을 조사하였다. 복합재료를 구성하는 천연섬유의 함량은 천연고무 및 배합제 대비 0, 5, 10, 15, 20 phr이었다. 실험결과 천연고무의 여러 가지 특성이 kenaf 섬유의 함량에 의존한다는 것을 나타내었다. Kenaf 섬유함량이 증가함에 따라 천연고무의 가황에 요구되는 토크는 높아진 반면 가황시간은 감소되었다. Kenaf/천연고무 복합재료의 경도, 인장탄성률과 인열강도는 섬유함량이 증가할수록 점차적으로 증가한 반면, 인장강도와 파단신장률 은 감소하는 경향을 보여주었다. 또한 kenaf 섬유함량이 증가함에 따라 천연고무의 정적 특성보다는 동적 특성의 변화가 더욱 크게 나타났다. 고무에 가해지는 에너지의 감쇄 또는 흡수와 밀접한 관계가 있는 손실인자도 섬유함량에 비례하여 증가하였다.

장방형 띠철근을 이용한 팔각형 플레어 RC 기둥의 내진성능 (Seismic Performance of Octagonal Flared RC Columns using Oblong Hoops)

  • 고성현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권6호
    • /
    • pp.1-9
    • /
    • 2015
  • 횡방향철근은 기둥의 소성힌지구간에 충분한 구속효과, 축방향철근의 좌굴방지와 연성거동을 확보하기 위해 적용된다. 기둥에서 사각형 후프 띠철근과 보강 띠철근의 조립 및 배근방법은 시공이 까다롭고 많은 횡방향철근량이 요구된다. 본 논문에서, 이러한 문제점들을 해결하기 위하여 장방형 단면과 플레어 기둥의 횡구속을 위한 장방형 후프 띠철근을 사용한 새로운 횡구속 방법이 제안되었다. 개발된 장방형 후프 띠철근 상세는 장방형 단면과 플레어 기둥의 시공성과 경제성을 향상시켜줄 수 있는 하나의 대안으로서 적용 가능한 것으로 판단된다. 본 연구의 최종목적은 철근콘크리트 교각의 시공성 향상을 위한 장방형 후프 띠철근 상세의 제시와 실험적 기초자료의 제공과 함께 하중단계별 성능 및 손상평가를 위한 정량적 수치와 경향을 제공하기 위한 것이며, 극한변위, 극한드리프트비율, 변위연성도, 응답수정계수, 등가점성감쇠비, 잔류변형지수, 유효강성 등의 주요 내진성능평가 변수들에 대한 분석결과를 나타내었다.

열박음 로터에서 간섭량의 강성 효과 (Stiffness effect of fitting interference for a shrunk rotor)

  • 김영춘;박희주;박철현;김경웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.319-324
    • /
    • 2003
  • In general industrial rotating machinery is operated under 3,600 rpm as rotating speed and designed to have critical speed that is above operating speed. So, there was no problem to operate rotating machine under critical speed. But nowadays, they should be operated more than the frist critical speed as usual with the trend of high speed, large scale and hish precision in industries. In case of the large rotor assembly as the trend of large scale, using fitting method of disk or cylinder on shaft is rising for the convenience of assembly and cutting down of manufacturing cost. The shrink fitting is used to assemble lamination part on shaft for manufacturing of rotor of motor or generator in many cases and also is widely used for other machinery. In rotating system, which is compose of rotor and bearing, the critical speed is determined from inertia and stiffness for the rotor and bearings. In case of fitting assembly, analysis and design of the rotor is not easy because the rotor stiffness is determined depend on a lot of factors such as shaft material/dimension, disk material/dimension and assembled interference etc. Therefore designer who makes a plan for hish-speed rotating machine should design that the critical speed is located out of operating range, as dangerous factors exist in it. In order to appropriate design, an accurate estimation of stiffness and damping is very important. The stiffness variation depend on fitting interference is a factor that changes critical speed and if it's possible to estimate it, that Is very useful to design rotor-bearing system. In this paper, the natural frequency variation of the rotor depends on fitting interference between basic shaft and cylinder is examined by experimentation. From the result, their correlation is evaluated quantitatively using numerical analysis that is introduced equivalent diameter end the calculation criteria is presented for designer who design fitting assembly to apply with ease for determination of appropriate interference.

  • PDF

휨지배 철근콘크리트 부재의 에너지소산성능 평가 방법 (Simplifed Method for Estimating Energy-Dissipation Capacity of Flexure-Dominant RC Members)

  • 엄태성;박흥근
    • 콘크리트학회논문집
    • /
    • 제14권4호
    • /
    • pp.566-577
    • /
    • 2002
  • 비선형 정적해석법과 같은 발전된 지진 해석 및 설계방법은 강도, 연성도, 에너지 소산량으로 대표되는 철근콘크리트 부재의 주기거동을 정확하게 예측하는 것이 필요하게 되었다. 그러나 현재, 에너지 소산량의 평가는 정확하지 못한 경험식을 사용하거나 실무적으로 사용하기 어려운 실험이나 정교한 수치해석에 의존하고 있다. 본 연구에서는 주기하중을 받는 휨지배 철근콘크리트 부재의 주기거동특성을 연구하기 위하여 비선형 유한요소해석을 수행하였다. 또한 압축력, 철근비, 배근형태 등이 주기거동에 미치는 영향에 대하여 연구하였다. 이러한 연구를 토대로 주기거동에 의한 에너지 소산량을 산정할 수 있는 약산법을 개발하였으며, 실험 및 수치해석 결과와의 비교를 통해 검증하였다. 본 연구에서 제안한 방법은 현재사용되고 있는 경험식보다 더 정확하게 철관콘크리트 부재의 에너지 소산능력을 평가할 수 있으며, 실무에 쉽게 적용할 수 있다.

An application of wave equation analysis program to pile dynamic formulae

  • Tokhi, H.;Ren, G.;Li, J.
    • Geomechanics and Engineering
    • /
    • 제9권3호
    • /
    • pp.345-360
    • /
    • 2015
  • Wave equation analysis programs (WEAP) such as GRLWEAP and TNOWave were primarily developed for pre-driving analysis. They can also be used for post-driving measurement applications with some refinements. In the case of pre-driving analysis, the programs are used for the purpose of selecting the right equipment for a given ground condition and controlling stresses during pile driving processes. Recently, the program is increasingly used for the post-driving measurement application, where an assessment based on a variety of input parameters such as hammer, driving system and dynamic behaviour of soil is carried out. The process of this type of analysis is quite simple and it is performed by matching accurately known parameters, such as from CAPWAP analysis, to the parameters used in GRLWEAP analysis. The parameters that are refined in the typical analysis are pile stresses, hammer energy, capacity, damping and quakes. Matching of these known quantities by adjusting hammer, cushion and soil parameters in the wave equation program results in blow counts or sets and stresses for other hammer energies and capacities and cushion configuration. The result of this analysis is output on a Bearing Graph that establishes a relationship between ultimate capacity and net set per blow. A further application of this refinement method can be applied to the assessment of dynamic formulae, which are extensively used in pile capacity calculation during pile driving process. In this paper, WEAP analysis is carried out to establish the relationship between the ultimate capacities and sets using the various parameters and using this relationship to recalibrate the dynamic formula. The results of this analysis presented show that some of the shortcoming of the dynamic formula can be overcome and the results can be improved by the introduction of a correction factor.

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

강도한계 이선형 단자유도 시스템의 동적 불안정 (Dynamic Instability of Strength-Limited Bilinear SDF Systems)

  • 한상환;김종보;배문수;문기훈
    • 한국지진공학회논문집
    • /
    • 제12권5호
    • /
    • pp.23-29
    • /
    • 2008
  • 강도한계 이선형 단자유도 시스템의 지진 하중 하에서의 동적 불안정에 대해 연구하였다. 강도한계 이선형 이력 모델은 철골 모멘트 골조의 이력거동을 가장 잘 모사한다. 단자유도 시스템의 동적 불안정을 판단하기 위해 붕괴 강도비를 사용하였고, 이것은 붕괴가 일어날 때의 항복강도 저감계수이다. 단단한 지반에서 측정된 240개의 지진을 이용하고 고유주기, 강성 경화 기울기, 음강성 기울기, 연성 그리고 $2{\sim}20%$의 감쇠비를 변수로 하여 강도한계 이선형 단자유도 시스템의 붕괴 강도비의 평균과 편차 값들을 구할 수 있도록 통계 분석을 하였다. 비선형 회귀분석을 통해 강도한계 이선형 단자유도 시스템의 붕괴 강도비의 평균과 표준편차를 계산할 수 있는 식을 구하였다. 제안한 식을 이용하여 붕괴 강도비의 확률적 분포를 구하였고, 실제 값과 비교하여 제안한 식의 정확성을 입증하였다.

폴리머 콘크리트를 이용한 엘리베이터 기인 구조 진동저감 성능 연구 (Study on Elevator Induced Structural Vibration Reduction Performance Using Polymer Concrete)

  • 염지혜;김정진;박준홍
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권6호
    • /
    • pp.90-94
    • /
    • 2021
  • 주거지에서의 정숙함에 대한 관심이 높아짐에 따라 구조물에서 발생하는 소음을 최소화할 필요가 있다. 중요한 소음원 중 하나는 엘리베이터 작동 소음이다. 엘리베이터는 층 사이에서 작동하며 인근 생활 공간에 상당히 성가신 소리를 생성한다. 입주민들에게 성가심을 유발하는 주요 소음원으로 인식되고 있다. 엘리베이터는 층간 이동을 위해 여러 위치에서 건물 구조에 지지되어 있다. 본 연구에서는 지지 위치에 폴리머 콘크리트를 사용하여 진동을 감소시키는 것을 실증하였다. 시멘트 콘크리트와 폴리머 콘크리트에 지지했을 때의 진동 발생량을 측정 및 비교하여 소음 저감 성능을 평가하였다. 폴리머 콘크리트는 승강로를 모방한 벽에 삽입되는 형태로 제작되었다. 브라켓에 충격진동을 인가하고 진동전달크기를 측정하였다. 감쇠비는 과도응답의 정규화 및 곡선맞춤을 통해 평가하였고, 각 레진 혼합 질량비에 대하여 비교하였다. 폴리머 콘크리트를 사용하여 구조적 강성에 대한 손실 없이 효과적인 방식으로 진동 발생을 감소시킬 수 있다.

Transient response of rhombic laminates

  • Anish, Anish;Chaubey, Abhay K.;Vishwakarma, Satyam;Kumar, Ajay;Fic, Stanislaw;Barnat-Hunek, Danuta
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.551-562
    • /
    • 2019
  • In the present study, a suitable mathematical model considering parabolic transverse shear strains for dynamic analysis of laminated composite skew plates under different types of impulse and spatial loads was presented for the first time. The proposed mathematical model satisfies zero transverse shear strain at the top and bottom of the plate. On the basis of the cubic variation of thickness coordinate in in-plane displacement fields of the present mathematical model, a 2D finite element (FE) model was developed including skew transformations in the mathematical model. No shear correction factor is required in the present formulation and damping effect was also incorporated. This is the first FE implementation considering a cubic variation of thickness coordinate in in-plane displacement fields including skew transformations to solve the forced vibration problem of composite skew plates. The effect of transverse shear and rotary inertia was incorporated in the present model. The Newmark-${\beta}$ scheme was adapted to perform time integration from step to step. The $C^0$ FE formulation was implemented to overcome the problem of $C^1$ continuity associated with the cubic variation of thickness coordinate in in-plane displacement fields. The numerical studies showed that the present 2D FE model predicts the result close to the analytical results. Many new results varying different parameter such as skew angles, boundary conditions, etc. were presented.