• 제목/요약/키워드: Damper spring

검색결과 406건 처리시간 0.019초

하모닉 밸런스법을 이용한 비선형 진동절연 시스템의 근사적 응답 (Approximate Response of a Non-linear Vibration Isolation System Using the Harmonic Balance Method)

  • 이건명
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.124-129
    • /
    • 2018
  • A non-linear vibration isolation system which is composed of a non-linear spring and a linear damper was proposed in past research. When the support of the isolation system is excited harmonically, the response component of the isolation system mass at the excitation frequency has been calculated approximately using the harmonic balance method. The response was approximated by a single mode, and the result was compared with a numerical result which is assumed as an accurate one. Next, the response was approximated by two modes, and the result was compared with the former one.

주요기기 내진성능 상향을 위한 설비보강 및 취약부 도출연구 (Study on Selection of Nuclear Seismic Fragile Equipment and Its Enhancement of Seismic Performance)

  • 손정대;구경회
    • 한국압력기기공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.16-23
    • /
    • 2018
  • In order to investigate the ways to enhance the seismic performance of APR1400 seismic fragile equipment by direct design changes, four equipment such as Reactor Vessel Support, Integrated Head Assembly, Remote Shutdown Console, and Pressurizer are reviewed using information of the main dimensions, seismic stress evaluation results, design FRS, etc. in this paper. In addition to the direct reinforcement of equipments, the feasibility of seismic isolation for the safety related cabinet is also investigated and the actual adaption plan of a commercial spring-damper system is briefly reviewed.

Nonlinear finite element model updating with a decentralized approach

  • Ni, P.H.;Ye, X.W.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.683-692
    • /
    • 2019
  • Traditional damage detection methods for nonlinear structures are often based on simplified models, such as the mass-spring-damper and shear-building models, which are insufficient for predicting the vibration responses of a real structure. Conventional global nonlinear finite element model updating methods are computationally intensive and time consuming. Thus, they cannot be applied to practical structures. A decentralized approach for identifying the nonlinear material parameters is proposed in this study. With this technique, a structure is divided into several small zones on the basis of its structural configuration. The unknown material parameters and measured vibration responses are then divided into several subsets accordingly. The structural parameters of each subset are then updated using the vibration responses of the subset with the Newton-successive-over-relaxation (SOR) method. A reinforced concrete and steel frame structure subjected to earthquake loading is used to verify the effectiveness and accuracy of the proposed method. The parameters in the material constitutive model, such as compressive strength, initial tangent stiffness and yielding stress, are identified accurately and efficiently compared with the global nonlinear model updating approach.

에어-드롭 해머와 카운터블로 해머 프레스 단조공정의 기계진동 비교해석 (Comparative Analysis of Mechanical Vibrations of an Air-Drop Hammer and a Counterblow Hammer in Forging Process)

  • 김수태;최영휴;주경진
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.10-18
    • /
    • 2022
  • Air-drop hammer press and counterblow hammer press are widely used power-drop forging hammersemploying different forging blow mechanisms. It is important and necessary to analyze mechanical vibrations of these two different hammers in their forging processes in order to develop high performance forging hammers. In this study, these two forging hammers were mathematically modelled as mass-spring-damper systems. For these two different types of forging hammers, the forging efficiency and mechanical vibrations due to hammer forging blow were theoretically analyzed and compared. The force transmitted to the ground was also determined and compared. Especially, effects of mass ratio and restitution coefficient on forging efficiency were investigated.

조작자 근육 활성도 기반 양팔 로봇의 임피던스 제어 파라미터 갱신 방법 (Impedance Parameter Update Method for Dual-arm Manipulator based on Operator's Muscle Activation)

  • 백찬렬;차광열;김준식;최영진
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.347-352
    • /
    • 2022
  • The paper presents how to update impedance control parameters for dual-arm manipulators using EMG signals and motions of the operator. Since the hand motions of the dual-arm are modeled to be the mass-spring-damper system in this paper, the impedance parameter update method is an important issue to reflect the operator's force. However, task space inertia to be used as the mass parameter goes to infinity if the manipulator approaches a kinematic singularity. To alleviate this issue, the impedance (stiffness and damping) parameters are divided with a diagonal element of the task space inertia. Also, the stiffness and damping matrices are updated using the normalized EMG signals captured from the operator's forearm. Through this process, the motion of the dual-arm manipulator is more stabilized even though it approaches the kinematic singularity.

현가 장치 개선을 위한 차량 동특성 해석에 관한 연구 (A study on the analysis of vehicle dynamic characteristics for the improvement of suspension system)

  • 이인학;임원식
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.130-138
    • /
    • 1997
  • In this study, to improve the ride and handling characteristics of the vehicle whose hard points have been already fixed, a tuning method of load spring, damper and stabilizer bar is described. For the suspension system of vehicle, optimized design is necessary to satisfy the incompatible two dynamic characteristics which are the ride isolation property between unsprung mass and sprung mass to reduce the excitation from the road and the accurate correring response property to specific steering inputs. To accomplish above aims, we may approach by experimental method, but it requires to sacrifice much time and cost. This paper, therefore, provides a process of suspension development to improve the ride and handling properties by using computer simulation with saving time and cost, and as results, comparaes the dynamic characteristics of the tuned vehicle with the base vehicle not tuned.

  • PDF

Numerical analysis of beams with damping subjected to dynamic loading

  • A.A. Mosallaie Barzoki;M. Saadantia;Hamed Karami
    • Earthquakes and Structures
    • /
    • 제24권2호
    • /
    • pp.91-96
    • /
    • 2023
  • In this article, the vibration response of elastic nanocomposite beams with enhanced damping by nanoparticles is presented based on the mathematical model. Damp construction is considered by spring and damper elements based on the Kelvin model. Exponential shear deformation beam theory (ESDBT) has been used to model the structure. The mixed model model is used to obtain the effective properties of the structure including compaction effects. Using the energy method and Hamilton's principle, the equations of motion are calculated. The beam frequency is obtained by analytical method. The purpose of this work is to investigate the effect of volume percentage of nanoparticles and density, length and thickness of the beam on the frequency of the structure. The results show that the frequency increases with the increase in volume percentage of nanoparticles.

센서위치를 고려한 능동 서스펜션 강인제어에 관한 연구 (A Study on Active Suspension Robust Control with Sensor and Actuator Location)

  • 박중현;장승재
    • 한국정보통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.1147-1152
    • /
    • 2006
  • 본 논문에서는 스카이훅댐퍼 시스템의 해석 및 설계에 능동 서스펜션 강인제어 이론을 적용하여 현가장치설계에 응용 할 수 있는 이론 및 실험적 제어 장치 적용에 관한 연구를 수행하였다. 최근의 현가장치설계에서는 강성과 감쇠를 능동적으로 제어하는 기술의 적용이 일반화되고 있으며, 다른 차량안정성제어장치와의 연계성이 높아짐에 따라, 제어시스템설계에서 보다 내구성이 강하고 제어효과의 응답성이 빠르며 정도 또한 높은 제어장치의 필요성이 요구되고 있다. 본 연구는 센서의 위치 관계에 따른 능동현가시스템을 해석하여 위와 같은 빠른 응답성과 높은 정도의 제어가 가능한 제어시스템을 해석, 설계하기 위하여 강인제어시스템의 적용에 관한 고찰을 하였다. 그리고 제어대상시스템에 대한 강인제어시스템을 설계하기 위한 모델링 및 적용방법을 수식적으로 해석하였으며, 스카이훅현가장치의 제어시스템설계에 중요한 내외란성 향상을 위한 강인제어 시스템설계에 적용하는 방법에 관해 고찰하였다.

Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM

  • Allahkarami, Farshid;Nikkhah-Bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.141-155
    • /
    • 2017
  • This paper presents an investigation into the magneto-thermo-mechanical vibration and damping of a viscoelastic functionally graded-carbon nanotubes (FG-CNTs)-reinforced curved microbeam based on Timoshenko beam and strain gradient theories. The structure is surrounded by a viscoelastic medium which is simulated with spring, damper and shear elements. The effective temperature-dependent material properties of the CNTs-reinforced composite beam are obtained using the extended rule of mixture. The structure is assumed to be subjected to a longitudinal magnetic field. The governing equations of motion are derived using Hamilton's principle and solved by employing differential quadrature method (DQM). The effect of various parameter like volume percent and distribution type of CNTs, temperature change, magnetic field, boundary conditions, material length scale parameter, central angle, viscoelastic medium and structural damping on the vibration and damping behaviors of the nanocomposite curved microbeam is examined. The results show that with increasing volume percent of CNTs and considering magnetic field, material length scale parameter and viscoelastic medium, the frequency of the system increases and critically damped situation occurs at higher values of damper constant. In addition, the structure with FGX distribution type of CNTs has the highest stiffness. It is also observed that increasing temperature, structural damping and central angle of curved microbeam decreases the frequency of the system.

비선형 SSI 해석을 위해 Spring-Damper 에너지 흡수경계조건을 적용한 BRM의 유한요소 모델링 범위에 따른 응답평가 (Evaluation of the Response of BRM Analysis with Spring-Damper Absorbing Boundary Condition according to Modeling Extent of FE Region for the Nonlinear SSI Analysis)

  • 이은행;김재민;정두리;주광호
    • 한국전산구조공학회논문집
    • /
    • 제29권6호
    • /
    • pp.499-512
    • /
    • 2016
  • 경계반력법은 일반적인 복합법에서 필요한 진동수영역과 시간영역의 반복 작업이 필요없는 두 단계의 시간수영역 부구조법이다. 경계반력법은 다음의 두 단계로 나누어진다: (1) 진동수영역에서 선형구간과 비선형구간 경계에서 경계반력계산, (2) 시간영역에서 경계반력을 이용한 파동방사형문제 해석. 이때 시간영역에서는 파동방사형문제를 모사하기 위해 근역지반을 모델링한다. 이 연구에서는 면진원전구조물의 비선형 SSI 해석을 위한 BRM 해석의 근역지반 모델링 범위에 따른 응답을 평가하였다. 이를 위해 등가선형 SSI 문제를 이용하여 매개변수해석을 수행하였다. BRM 응답의 정확성을 평가하기 위해 BRM 응답은 재래의 SSI 해석의 응답과 비교하였다. 수치해석결과 BRM 해석을 위한 근역지반 모델링 범위는 기초의 크기뿐만 아니라 지반조건의 영향을 받았다. 마지막으로, BRM 해석을 면진원전구조물의 비선형 SSI 해석에 적용하므로 BRM의 정확성과 효율성을 입증하였다.