• Title/Summary/Keyword: Damper spring

Search Result 406, Processing Time 0.026 seconds

A Study on the displacement characteristics of suspension elements for KTX (고속철도차량 현가계요소 변위특성 연구)

  • Hur H.M.;Kwon S.T.;Lee C.W.;Kim H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.378-382
    • /
    • 2005
  • The opening of high speed railway upgraded our land transportation speed limit, causing lots of changes including living and culture and also paving the way for stepping up the railway technology. However, it is also true that we had a limit to adopt the existing railway system structured for 150km/h to the new structure requiring a higher speed of approximate 300km/h due to technological, based on the time and experience. More importantly, heading toward a step of operating such a high speed railway system, it has been practically and quickly proposed that the railway needs high speed railway engineering, maintenance technology of parts of the vehicles to have a stable maintenance foundation and localization of major parts. Therefore, this study was intended to research the actual displacement characteristics in runningg on an actual track for the purpose of developing the protective and maintenance technology of springs and dampers, which are core parts among suspension elements of a high speed railway vehicle. For this, it was researched the actual vehicle test and its interpretation centered on primary spring, which is used for the suspension system of a bogie, body-body dampers and body-bogie yaw damper. Also, to analyze the displacement characteristics of suspension system in the actual conditions of high speed railway vehicles, a vehicle‘s dynamic characteristics was analyzed and interpreted. At the same time, a tester for measuring the actual displacement of such suspension elements was designed and attached to actual vehicles, to measure the displacements that occur in running it on the Seoul-Busan line, one of major lines serviced by KTX. The displacement data gained from the test with actual vehicles was analyzed for its displacement distribution depending on the service sections and frequency, with which the valuable data necessary for any potential breakdown or maintenance in the future could be obtained.

  • PDF

Position Estimation of MBK system for non-Gaussian Underwater Sensor Networks (비가우시안 노이즈가 존재하는 수중 환경에서 MBK 시스템의 위치 추정)

  • Lee, Dae-Hee;Yang, Yeon-Mo;Huh, Kyung Moo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.232-238
    • /
    • 2013
  • This paper study the position estimation of MBK system according to the non-linear filter for non-Gaussian noise in underwater sensor networks. In the filter to estimate location, recently, the extended Kalman filter (EKF) and particle filter are getting attention. EKF is widely used due to the best algorithm in the Gaussian noise environment, but has many restrictions on the usage in non-Gaussian noise environment such as in underwater. In this paper, we propose the improved One-Dimension Particle Filter (ODPF) using the distribution re-interpretation techniques based on the maximum likelihood. Through the simulation, we compared and analyzed the proposed particle filter with the EKF in non-Gaussian underwater sensor networks. In the case of both the sufficient statistical sample and the sufficient calculation capacity, we confirm that the ODPF's result shows more accurate localization than EKF's result.

The Control of Spring-Mass-Damper Convergence System using H Controller and μ-Synthesis Controller (H 제어와 μ-합성 제어를 이용한 스프링-질량-감쇠 융합시스템 제어)

  • Jung, Sunghun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.1-11
    • /
    • 2017
  • With a given spring-mass-damper system, $H_{\infty}$ and ${\mu}$-synthesis control methods are used to build system controllers which minimize vibrations at two major natural frequencies in two cases; without uncertainty; with 20% uncertainty. In order to check the stability and performance of two controllers, those are examined using GM and PM values. The signal strength of output responses is compared using the concept of central numerical differentiation and then results are quantified using the RMS method. Lastly, 40 random samples of $H_{\infty}$ and ${\mu}$-synthesis controllers are obtained for three different $W_{per\;f1}$ weighting functions and drawn in the time domain in order to compare the stability. Overall, ${\mu}$-synthesis controller manages the vibrations much better than $H_{\infty}$ controller according to the robust stability and performance values obtained by simulating random samples of 40 plant models.

Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping

  • Azizi, A.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.771-791
    • /
    • 2018
  • This paper deals with the low velocity impact response and dynamic stresses of composite sandwich truncated conical shells (STCS) with compressible or incompressible core. Impacts are assumed to occur normally over the top face-sheet and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The displacement fields of core and face sheets are considered by higher order and first order shear deformation theory (FSDT), respectively. Considering continuity boundary conditions between the layers, the motion equations are derived based on Hamilton's principal incorporating the curvature, in-plane stress of the core and the structural damping effects based on Kelvin-Voigt model. In order to obtain the contact force, the displacement histories and the dynamic stresses, the differential quadrature method (DQM) is used. The effects of different parameters such as number of the layers of the face sheets, boundary conditions, semi vertex angle of the cone, impact velocity of impactor, trapezoidal shape and in-plane stresses of the core are examined on the low velocity impact response of STCS. Comparison of the present results with those reported by other researchers, confirms the accuracy of the present method. Numerical results show that increasing the impact velocity of the impactor yields to increases in the maximum contact force and deflection, while the contact duration is decreased. In addition, the normal stresses induced in top layer are higher than bottom layer since the top layer is subjected to impact load. Furthermore, with considering structural damping, the contact force and dynamic deflection decrees.

Mathematical Modelling and Chaotic Behavior Analysis of Cyber Addiction (사이버 중독의 수학적 모델링과 비선형 거동 해석)

  • Kim, Myung-Mi;Bae, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.245-250
    • /
    • 2014
  • Addiction can be largely divided into two categories. One is called medium addiction in which medium itself causes an addiction. Another is called cause addiction that brings addiction through combination of sensitive self and latent personal action. The medium addiction involves addiction phenomena directly caused by illegal drugs, alcohol and various other chemicals. The cause addiction is dependent on personal sensitivities as a sensitive problem of personal and includes cyber addictions such as shopping, work, game, internet, TV, and gambling. In this paper we propose two-dimensional addiction model that are equivalent to using an R-L-C series circuit of Electrical circuit and a Spring-Damper-mass of mechanical system. We also organize a Duffing equation that is added a nonlinear term in the proposed two-dimensional addiction model. We represent periodic motion and chaotic motion as time series and phase portrait according to parameter's variation. We confirm that among parameters chaotic motion had addicted state and periodic motion caused by change in control coefficient had pre-addiction state.

Shaking Table Test of Isolated EDG Model (면진된 모형 비상디젤발전기의 지진응답 실험)

  • Kim, Min-Kyu;Choun, Young-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.33-42
    • /
    • 2007
  • In this study, for research on an improvement of the seismic safety of an EDG system, a small scale EDG system was manufactured. For the isolation system, the Coil Spring-Viscous Damper systems were selected. For the shaking table test, 3 kinds of seismic motions were selected which had different frequency contents. In this study, the isolation effects were different and they depended on the input seismic motion. In the case of an NRC earthquake which had low fiequency contents, the isolation effects of the horizontal direction were 20%. But for the seismic motions which had high fiequency contents, the isolation effects were $50{\sim}70%$. In the case of the vertical direction, poor isolation effects were observed. It was because the design properties and the real properties of the isolation system were a little different.

A Study on Clutch Torsional Characteristics for the Torsional Vibration Reduction at Driving (주행시 비틀림진동 저감을 위한 클러치 비틀림특성 연구)

  • 정태진;홍동표;태신호;윤영진;김상수
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.75-83
    • /
    • 1995
  • The fluctuation of the engine torque appears to be the major source of the torsional vibration of the automotive driveline. The reduction of this torsional vibration has become a significant problem, due to an increase in the fluctuation of the torque of recent light weighted and high powered engines, along with the requirements of higher performance. The torsional vibration of the automotive driveline can be reduced by smoothing the fluctuation by adjusting the torsional characteristics of the clutch-disc. This paper presents an experimental and theoretical research on the clutch-disc torsional characteristics for the reduction of the torsional vibration at driving. The effects of clutch-damper on diminishing the torsional vibration were investigated experimentally. A dynamic model for the automotive driveline was developed, and the engine torque of the model were evaluated with experimental data. By executing a simulation using the model, it has become possible to obtain the clutch-disc torsional characteristics and the clutch-disc torsional characteristics for reducing the torsional vibration has been suggested. The results are as follows: (1) By exceuting simulations using nonlinear model of four degrees of freedom, a design technique to determine the clutch-disc torsional characteristics for reducing the torsional vibration at driving was developed. (2) The influence of barious torsional characteristics of the clutch has been studied in examining design parameters, which indicates that the domain to minimize the torsional vibration at driving depends on the characteristics of the clutch-damper, i. e., spring constant and hysteresis.

  • PDF

An Experimental Study on the Vibration Characteristics in Viscous Damper using Magneticfluid (자성유체를 이용한 점성댐퍼에서의 진동특성에 관한 실험연구)

  • Lee, B. G.;Chun, U. H.;Hwang, S. S.;Lee, H. S.;Kim, J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.163-171
    • /
    • 2000
  • The aim this study is to provide fundamental informations for the development of magneticfluid damper. To achieve the aim. the damping effect of magneticfluid is investigated by experiments that the diameter of inner circular bar and the input amplitude vary in the magnetic field generated by the permanent magnet and the electromagnet. From the study, the following conclusive remarks can be made. As the diameter of inner circular bar and the input amplitude increase. the damping effect is improved. And we can know that as the contact area between inner circular bar and magneticfluid increases, damping ratio is improved. Also we consider the cases that there is magnetism generated by electromagnet and DC voltage is supplied to electromagnet from 10V to 50V by 10V. In these cases, the amplitude ratio decreases sharply from 1.8 1.0 And for these cases, the damping ratio is .745.

  • PDF

Heat Transfer Analysis of Hydropneumatic Suspension Unit By Finite Element Method (유한요소법을 이용한 유기압 현수장치의 열전달 해석)

  • Bae, Jing-Do;Cho, Jin-Rae;Lee, Hong-Woo;Song, Jung-In;Lee, Jin-Kyoo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.531-536
    • /
    • 2004
  • In-arm type hydropeumatic suspension unit(ISU) is an equipment of armed tracked vehicle to absorb impact load and vibration from the irregular ground. During the operation of ISU, main piston moves forward and backward and oil flowing through damper transmits the external impact load to floating piston. Heat is generated in ISU by the oil pressure drop through the damper orifice and the friction between cylinder wall and two pistons. On the other hand, internal heat dissipatis outside via heat convection. Occurrence of high temperature can deteriorate durability of major components and basic function of ISU. And, it can cause fatal problem in the ISU life time and the sealing performance of piston rings. As well, the spring constant change of nitrogen gas that is caused by the temperature rise exerts the negative effect to the vehicle stability. Therefore, in this paper, we analyze the heat transfer analysis of the entire ISU unit, by finite element method, with the outside flow velocities 8m/s and 10m/s.

  • PDF

A Study on Adopting Active Suspension Control in Sky Hook System (스카이훅 시스템에의 능동 서스펜션 제어 이론 적용에 관한 연구)

  • Park Jung-Hyen;Jang Seung-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.950-955
    • /
    • 2006
  • This paper prosed modelling and design method in suspension system sesign to analyze sky hook damper system by adopting active suspension control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is hon that sky hook suspension system is better than passive spring-damper system in designing suspension equipment. We analyze location of damper in sky hook system and its motion equation then design robust control system. Numerical example is shown for validity of robust control system design in active sky hook suspension system.