
1. Introduction
Exact control of electrical, mechanical, and even

mechatronical system components is getting important

due to the increased complexities of recently developed

systems in the domains of such as automotive,

aerospace, civil, and etc.
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Abstract With a given spring-mass-damper system, ∞ and -synthesis control methods are used to

build system controllers which minimize vibrations at two major natural frequencies in two cases; without

uncertainty; with 20% uncertainty. In order to check the stability and performance of two controllers, those

are examined using GM and PM values. The signal strength of output responses is compared using the

concept of central numerical differentiation and then results are quantified using the RMS method. Lastly,

40 random samples of ∞ and -synthesis controllers are obtained for three different  weighting

functions and drawn in the time domain in order to compare the stability. Overall, μ-synthesis controller

manages the vibrations much better than ∞ controller according to the robust stability and performance

values obtained by simulating random samples of 40 plant models.
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요 약 ∞ 제어와 뮤-합성 제어 방법을 사용하여 두 가지 상황, 즉 불확실성이 포함되지 않았을 때와 20%

불확실성이 포함되었을 때, 하에서 스프링-매스-댐퍼 시스템의 진동을 최소화하였다. 두 컨트롤러의 안정성 및 성

능 파악을 위해 GM와 PM 값을 사용하여 분석되었다. 중앙 수치 미분법과 RMS 방법을 사용하여 출력 응답의

신호 강도가 비교되었다. 끝으로, 안정성비교를위하여 3가지 다른  가중함수의경우에 대해총 40개의 ∞

제어기와 뮤-합성 제어기 무작위 표본이 생성되었다. 전반적으로, 40개 플랜트 모델에서 얻어진 결과 값의 견고한

안정성과 성능 값에 따르면, 뮤-합성 제어기가 ∞ 제어기보다 진동 관리에 효과적임이 입증되었다

• 주제어 : CLTF, H-Infinity, Mu-합성, 제곱평균제곱근, 전달함수
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Among hundreds and thousands of components

configuring a system, a spring- mass-damper

component is one of the most widely applied system

component [1]. There are many approaches to control a

spring-mass- damper system for automotive

applications, including model predictive control (MPC)

[2,3] and semiactive force generators [4] and it is even

applied to civil engineering structures including

magnetorheological (MR) dampers [5,6], semiactive

tuned mass damper (TMD) [7], semiactive variable

stiffness tuned mass damper (SAIVS-TMD) [8], and

tuned liquid column damper [9].

There are several reasons why output feedback

(OPFB) is preferred than state variable feedback

(SVFB); firstly, static OPFB controllers cost less than

the full SVFB controllers most of the time; secondly, it

is not possible to observe all state vectors for the

feedback in real life; thirdly, static OPFB has a sturdier

structure than SVFB; finally, static OPFB is often used

as a backup controller which only operates when there

is a system failure [10,11].

In this paper, disturbance attenuation and system

control will be discussed in the prescribed performance

using ∞ loop shaping method and -synthesis

method at both the first and the second natural

frequencies [12,13,14]. In addition, loop shaping method

will be studied for getting better disturbance rejections.

The flow of this paper is as follows. Section 2 shows

an overview of the spring-mass- damper system and

Section 3 describes the system model. Section 4

illustrates ∞ controller design with no uncertainty

and Section 5 illustrates -synthesis controller design

with 20% uncertainty involvement. Lastly, Section 6

contains the conclusion of this paper and future works.

2. System Overview
The overall system is shown in [Fig. 1] and free

body diagram is shown in [Fig. 2] [15,16]. Inputs, an

output, and an uncertainty level are shown in <Table

1>.

[Fig. 1] Overall spring-mass-damper system [14]

[Fig. 2] Free body diagram of the two degrees of 
freedom spring-mass-damper system

<Table 1> Input, output, and uncertainty level of the 
spring-mass-damper system
Control Input 

External Input 

Disturbance Input  , 

Output   

Uncertainty Level 20%

In [Fig. 2], an additional spring,  , on the right side

of the mass,  , is attached to be compared to the

original system.

The overall ∞ control design is designed as shown

in [Fig. 3] [17].

[Fig. 3] Block diagram of ∞  controller

3. System Model
The dynamic equation of the given system model is,











(1)
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where    ,    ,   ,

  ,   , and   .

As shown in Eq. 1, there are two inputs ( and )

and four outputs ( ,  ,  , and ) and this

multiple-input and multiple-output (MIMO) state space

model can be rewritten in matrix forms as,
























   












   




 

 



































 

 



 



 








(2)
























   












   
   





























 





 
 







where A, B, C, and D matrices are defined as

 






   

  
   

  














 
 
 
















   

  
   
   







 






 
 
 
 







Using MATLAB, plant poles, zeros, and natural

frequencies are obtained as shown in <Table 2>.

<Table 2> Plant poles, zeros, and natural frequencies of 
the system
Eigenvalue Damping Freq. (rad/s)

-3.41e-1 + 1.08e1i 3.16e-2 1.08e1

-3.41e-1 - 1.08e1i 3.16e-2 1.08e1

-2.70e-1 + 2.87e1i 9.40e-3 2.87e1

-2.70e-1 - 2.87e1i 9.40e-3 2.87e1

The [Fig. 4] illustrates calculated natural frequencies

shown in <Table 2>. The first graph is obtained from

the output  and the second graph is come from the

output   which is equal to the distance of   .

[Fig. 4] Bode plots of two outputs,   and  

4. ∞  Controller Design
(With No Uncertainty)

4.1 Motion Control of 

Two ∞ controllers are designed and each

controller is named as  and  where those were

designed first and second, respectively.

4.2 Selection of Weighting TFs
By assuming that a sensor noise value of 0.01 m and

the maximum vibration of 0.01 m ( which is applied

to the spring, ), we can set    and

  .

Then, weighting transfer functions (TF) are chosen

based on the rigorous consideration as shown in Eq. 3

and [Fig. 5].
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
 




  




  




(3)

[Fig. 5] Bode plot of weighting TFs

After choosing all weighting TFs, an augmented

system is built using a MATLAB command, sysic, as

shown in Eq. 4. The augmented system has seven

states, three outputs ( ,  , and   ),

and three inputs ( ,  , and ).




(4)

where

 






      

      
      

       
      
      
      







 






  
  
  

  
  
  
  






 





      
      
     






 




  
  
  






4.3 H∞ Controller Design to Minimize  

The ∞ controller is designed using MATLAB and

[Fig 6] shows the responses of the plant,  , and 

when  is applied to  . Again, the  controller is

designed first and  controller is designed later. It

shows that the  controller works much better than

the  controller which only works well with the first

peak.

(a) Closed loop TFs for minimizing 

(b) Closed loop TFs for minimizing  

[Fig. 6] Closed loop TFs for minimizing   and  

In order to verify the stability of both  and 

controllers, gain margin (GM) and phase margin (PM)

values are calculated using a MATLAB command,

margin, as shown in <Table 3> and [Fig. 7].

<Table 3> PM and GM values of plant,  , and 

Plant CL1 CL2

GM (dB) Inf Inf Inf

PH (deg) 3.43 2.56 11.7
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(a) Bode plot of plant

(b) Bode plot of 

(c) Bode plot of [Fig. 7] Bode plots of plant,  , and 

Since all GM values are larger than one and PM

values are nonnegative, it can be considered as stable.

Though  has lower PM value than plant, it is

improved with the second  design which shows the

much higher PM value, 11.7 deg.

The [Fig. 8] shows all responses including  ,  ,

 , and  . According to the third graph in [Fig. 8], it

is obvious that the  works greatly compared to the

 which behaves almost same with the plant. The 

(∞ controller) achieved a norm of 0.85139 and  (μ

-synthesis controller) achieved a norm of 1.294 which

are quite close to one.

(a) System responses of  ,
 ,  , and 

(b) System response of 


[Fig. 8] System responses of ∞  controller

In order to compare the signal strength of three

vibrations in detail, the third figure of [Fig. 8(a)] is

redrawn in [Fig. 8(b)]. Using the concept of central

numerical differentiation and root mean square (RMS),

acceleration data are used to quantify the strength of

the vibration where acceleration data are usually used

to quantify the signal strength by most jurisdictions

and standard agencies. According to [18], a central

difference for higher order derivative is defined as,

″ ″≃

  
    (5)

where ″ is the acceleration,  is the result data, and
 is the time interval.

In addition, RMS value of a set of values is the

square of the arithmetic average of the squares of the

original values. Equation of the RMS when there is a

set of n values,  , ...,  , is defines as
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s 





 

   


(6)

and the result of the RMS values is shown in <Table

4>.

<Table 4> PM and GM values of plant,  , and 

Plant CL1 CL2

RMS 8.4130 8.7654 3.9860

According to <Table 4>,  has the lowest RMS

value, 3.9860, and it means that the vibration is the

lowest among three curves shown in [Fig. 8(b)]. The

 , however, turns out to be even worse than the

original plant.

5. μ-Synthesis Controller Design 
(With 20% Uncertainty)

In this section, 20% of uncertainty is introduced into

the system. In order to control the uncertainty, μ

-synthesis controller is newly designed and shown in

[Fig. 9].

[Fig. 9] Block diagram of μ-synthesis controller

According to the actuator uncertainty weighting TF

designed as

  











(7)

and shown in [Fig. 10], there is 20% vibration at lower

frequency and it quickly grows up to 15000% at around

3000 rad/s. In addition, bode plots of actuator dynamics

are drawn as shown in [Fig. 11].

[Fig. 10] Uncertainty weighting TF

[Fig. 11] Bode plot of actuator dynamics

5.1  Weighting Function Design: Case 1
The new TF,  , is designed as shown in Eq.

8 and corresponding uncertainty closed-loop transfer

functions (CLTF) of  and   are shown in [Fig.

12]. According to [Fig. 12],  behaves better than  .

  






















 ∆






 (8)

(a) System response of 
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(b) System response of  

[Fig. 12] System response of  and   (case 1)

Particularly, in [Fig. 13(a)], the achieved ∞ robust

stability property value is 1.3031 which is larger than

one and it means that the controller  is stable.

However, since the ∞ robust performance property

value, 0.8759, is less than one, it did not meet the

requirement.

Again, GM and PM values are calculated as shown

in <Table 5> and [Fig. 13].

<Table 5> PM and GM values of plant,  , and 

Plant CL1 CL2
GM (dB) Inf -2.63 Inf

PM (deg) 3.43 -0.782 2.84

(a) Bode plot of plant

(b) Bode plot of 

(c) Bode plot of 

[Fig. 13] Bode plots of plant,  , and 

Unfortunately, PM value of  is even less than the

PM value of the plant about 1 deg.  is even worse

since both GM and PM values become negative. These

results can be deduced from [Fig. 14]. Again, in order

to compare the signal strength of three vibrations in

detail, the third figure of [Fig. 14(a)] is redrawn in [Fig.

14(b)].

(a) System responses of  ,
 ,  , and 

(b) System response of  

[Fig. 14] System responses of μ-synthesis controller
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According to [Fig. 14(b)], the  controller vibrates

even more than the plant, but the  controller

minimizes the magnitude of vibration. This can be

interpreted as  works better than  in general.

RMS values of the plant,  , and  are

calculated as shown in <Table 6>.

<Table 6> RMS values of plant,  , and 

Plant CL1 CL2

RMS 8.4130 9.9588 8.2365

According to <Table 6>,  has the lowest RMS

value, 8.2365, and it means that the vibration is the

lowest among three curves in [Fig. 14(b)]. However,

 turns out to be even worse than the original plant.

If we compare  values of <Table 4> and <Table

6>, the ∞ controller works much better than μ

-synthesis controller.

(a) 40 random samples of μ–synthesis controller

(b) 40 random samples of ∞ controller

[Fig. 15] 40 random samples of μ–synthesis controller 
and ∞  controller (case 1)

Now, random samples of 40 plant models are

generated using both μ–synthesis controller and ∞

controller as shown in [Fig. 15]. It is obvious that the

vibration in [Fig. 15(b)] oscillates much more than the

one in [Fig. 15(a)] and it means that μ-synthesis

controller minimizes the vibration much more than ∞

controller.

5.2  Weighting Function Design: Case 2
By changing the  weighting function as


 


 (9)

resulting [Fig. 16], we can draw additional information.

Here, the ∞ robust stability property becomes less

than one and it means that the controller is not stable

([Fig. 17(b)]). By looking at both [Fig. 15(a)] and [Fig.

17(a)], when the gain value of  is increased from

six to ten, the oscillation of the random samples

becomes stronger which is not good for the control

design.

(a) System response of 

(b) System response of  [Fig. 16] System responses of μ–synthesis and ∞  
controller (case 2)
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(a) 40 random samples of μ–synthesis controller

(b) 40 random samples of ∞ controller

[Fig. 17] 40 random samples of μ–synthesis controller 
and ∞  controller (case 2)

5.3  Weighting Function Design: Case 3
Furthermore, changing the  weighting

function as

  


 (10)

resulting [Fig. 18] and [Fig. 19] turns out to be even

worse since the stability value is decreased from 0.7568

to 0.6361. However, in the aspect of μ-synthesis

controller, the newly designed weighting function

works better than before (much less vibration as

shown in [Fig. 19(a)]).

(a) System response of 

(b) System response of  

[Fig. 18] System responses of μ–synthesis and ∞  
controller (case 3)

(a) System response of 

(b) System response of  

[Fig. 19] System responses of μ–synthesis and ∞  
controller (case 3)
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Finally, <Table 7> summarizes all the robust

stability and robust performance property values of

previous three cases of weighting functions.

<Table 7> Summary of the robust stability and 
performance values



Case 1 Case 2 Case 3

∞

Robust Stab. 1.3031

0.6759

0.7568

0.5769

0.6361

0.4816Robust Perf.

-synthesis
Robust Stab. 2.4394

1.1922

1.7813

1.0527

1.8775

0.8856Robust Perf.

According to <Table 7>, it can be concluded that as

robust stability value grows over one, the system

becomes even more stable which can be deduced from

[Fig. 15(a)], [Fig. 17(a)], and [Fig. 19(a)].

6. Conclusion
Through the paper, two kinds of controllers,

including ∞ controller and μ-synthesis controller are

designed to control the motion of two masses in the

given spring-mass- damper hardware system. Overall,

the μ-synthesis controller controls the vibrations much

better than the ∞ controller and it is even much

easier to design weighting functions using a μ

-synthesis controller since it performs so stable. To

design a more reliable controller, the user might use

increased number of random samples rather than using

only 40 random samples.

In the future, applications of the ∞ controller and

μ-synthesis controller to the quadrotor type unmanned

aerial vehicle (UAV) will be studied based on the

similar approach shown in this paper.
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