• Title/Summary/Keyword: Damper spring

Search Result 406, Processing Time 0.026 seconds

Study on the Parameter Decision of Spring-viscous Dampers for Torsional Vibration Reduction of Diesel Engine Shafting System (디젤엔진축계 진동저감을 위한 스프링-점성 댐퍼의 매개변수 결정 연구)

  • Lee, D.H.;Chung, T.Y.;Kim, Y.C.;Shin, Y.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1168-1175
    • /
    • 2010
  • Excessive torsional vibrations from marine engine shafting systems can be reduced by using torsional vibration dampers. But in order to be tuned effectively, the dampers should be designed through the optimum design procedure. In this paper, the procedure to get the optimum values of system parameters of spring-viscous dampers using effective modal mass of inertia and stiffness is suggested and the damping is determined by the exact algebra optimization method. The validity of the suggested method is confirmed through the application to a 1800 kW four cycle diesel engine and generator system.

Analysis of Metal Transfer using Dynamic Force Balance Model in GMAW (동적 힘 평형 모델을 이용한 GMA 용접의 용적이행 해석)

  • 최재형;이지혜;유중돈
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.399-405
    • /
    • 2001
  • A dynamic force balance model is proposed in this work as an extension of the previous static force balance model to predict metal transfer in arc welding. Dynamics of a pendant drop is modeled as the second order system, which consists of the mass, spring and damper. The spring constant of a spherical drop at equilibrium is derived in the closed-form equation, and the inertia force caused by drop vibration is included in the drop detaching condition. While the inertia force is small in the low current range, it becomes larger than the gravitational force with current increase. The inertia force reaches half of the electromagnetic force at transition current, and has considerable effects on drop detachment. The proposed dynamic force balance model predicts the detaching drop size more accurately than the static force balance model.

  • PDF

Analysis of Camshaft Vibration Characteristics with Mixed Lubrication (혼합 윤활을 고려한 캠 축 진동 특성 해석)

  • 김지운;문태선;한동철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.34-43
    • /
    • 2002
  • This paper focused on the dynamic behavior of camshaft in a direct acting type valve train system. To investigate camshaft behavior, transient vibration analysis is performed by using the transfer matrix method. The camshaft is treated as a lumped mass system supported by spring and damper, From the presented analytical model, we could predict dynamic behavior of camshaft, shaft locus within bearing and bearing load. The presented model and results will be very helpful to design the optimal camshaft and valve train system.

Effects of High Damping Rubber Bearing on Horizontal and Vertical Seismic Responses of a Pressurized Water Reactor

  • Bong Yoo;Lee, Jae-Han;Koo, Gyeong-Hoi
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.1021-1026
    • /
    • 1995
  • The seismic responses of a base isolated Pressurized Water Reactor (PWR) are investigated using a mathematical model which expresses the superstructure as lumped mass-spring model and the seismic isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 E1 Centre earthquakes in both horizontal and vertical directions. In the analysis, structural damping of 5% is used for the superstructure. The isolator damping ratios of 12% for horizontal and 5% for vertical directions are used. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure in horizontal direction. However, the vertical acceleration responses at the superstructure in the base isolation system are amplified to some extent. It is suggested that the vertical seismic responses at the superstructure should be reduced by introducing a soft vertical isolation device.

  • PDF

A Study on the Vibration of 2-Stage Gear System Considering the Change of Gear Meshing Stiffness and Imbalance of Motor (기어 물림부의 스프링강성 변화와 구동기의 불균형을 고려한 2단 기어장치의 진동에 관한 연구)

  • 정태형;이정상;최정락
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.8-14
    • /
    • 2001
  • We develop a method to analyze dynamic behavior off multi-stage gear train system. The example system consists of three shafts supported by ball bearings at the ends of them and two pairs of spur gear set. For exact analysis, the meshing tooth pair of gear set is modeled as spring and damper having time-dependent meshing stiffness and damping. The bearing is modeled as spring. The result of this analysis is compared to that of other model having mean mesh stiffness. The effect of the excitation force by the unbalance off rotor off motor is also analyzed. Finally, the change ova natural frequency of the whole system due to the change of an angle between three shafts is compared in each case, and from this analysis, the avoiding angle for design is advised.

  • PDF

A study on the dynamic vibration absorber having non-linear spring and linear damper (非線型 스프링과 線型감쇠를 가지는 動吸振器에 관한 硏究)

  • 김광식;안찬우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.473-478
    • /
    • 1987
  • In this paper the optimum values of natural frequency ratio and damping ratio for damped systems were studied by numerical analysis. The relation between the amplitude ratio and frequency ratio obtained for the non-linear dynamic vibration absorber was found and it was compared with that of linear system. The results shows that the optimum frequency ratio decreases and the optimum damping ratio increases when the mass ratio of the damped system increases. The resonance frequency ratio and amplitude ratio decrease as mass ratio increases for the non-linear spring system.

Adaptive Control of the Active Pantograph for a High-speed Train

  • Park, In-Ki;Park, Tong-Jin;Wang, Yeung-Yong;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.174.3-174
    • /
    • 2001
  • Electric power collection is one of the most important factors for the high-speed trains' operation. For the stable current collection, the contact wire of a catenary and the panhead of a pantograph should maintain a constant contact each other. In this paper, the catenary was modeled as a spring with time-varying stiffness from the point of a pantograph moving along the catenary, and the pantograph was modeled as a 3-D.O.F. mass-spring-damper system. Using the adaptive control method, the desired control performance could be obtained with the modeling errors and the time varying parameters. Also the state estimator was used considering the difficulty of applying the sensors obtaining feedback signals. Simulations were accomplished in various ...

  • PDF

Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components (부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석)

  • Hwang, Won-Gul;Sung, Won-Suk;Ahn, Ki-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.

Vibration suppression in high-speed trains with negative stiffness dampers

  • Shi, Xiang;Zhu, Songye;Ni, Yi-qing;Li, Jianchun
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.653-668
    • /
    • 2018
  • This work proposes and investigates re-centering negative stiffness dampers (NSDs) for vibration suppression in high-speed trains. The merit of the negative stiffness feature is demonstrated by active controllers on a high-speed train. This merit inspires the replacement of active controllers with re-centering NSDs, which are more reliable and robust than active controllers. The proposed damper design consists of a passive magnetic negative stiffness spring and a semi-active positioning shaft for re-centering function. The former produces negative stiffness control forces, and the latter prevents the amplification of quasi-static spring deflection. Numerical investigations verify that the proposed re-centering NSD can improve ride comfort significantly without amplifying spring deflection.

IMPROVEMENT OF RIDE AND HANDLING CHARACTERISTICS USING MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES

  • KIM W. Y.;KIM D. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • In order to reduce the time and costs of improving the performance of vehicle suspensions, the techniques for optimizing damping and air spring characteristic were proposed. A full vehicle model for a bus is constructed with a car body, front and rear suspension linkages, air springs, dampers, tires, and a steering system. An air spring and a damper are modeled with nonlinear characteristics using experimental data and a curve fitting technique. The objective function for ride quality is WRMS (Weighted RMS) of the power spectral density of the vertical acceleration at the driver's seat, middle seat and rear seat. The objective function for handling performance is the RMS (Root Mean Squares) of the roll angle, roll rate, yaw rate, and lateral acceleration at the center of gravity of a body during a lane change. The design variables are determined by damping coefficients, damping exponents and curve fitting parameters of air spring characteristic curves. The Taguchi method is used in order to investigate sensitivity of design variables. Since ride and handling performances are mutually conflicting characteristics, the validity of the developed optimum design procedure is demonstrated by comparing the trends of ride and handling performance indices with respect to the ratio of weighting factors. The global criterion method is proposed to obtain the solution of multi-objective optimization problem.