• Title/Summary/Keyword: Damped Natural Frequency

Search Result 53, Processing Time 0.022 seconds

Study on improvement of frequency response characteristics of accelerometer (진동가속도계의 주파수응답특성 개선에 관한 연구)

  • 한응교;조진호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.61-68
    • /
    • 1981
  • There are three types in frequency response accelerometer; one is lightly damped piezp type, another is oil damping stainguage type and the third is electro induction type accelerometer within electromagnetic damping. The usable frequency range of lightly damped accelerometers is limited to 0.2 of their mounted natural frequency for amplitude distortion of less than 5 percents. There have been situation where the measured motion contains unforeseen high - frequency components, which are regarded as such due to the accelerometer transfer function. There are several way to overcome amplitude distortion of the higher than anticipated frequency components; (I) to make use of the accelerometer with natural frequency three times and more as high as the measured frequency, (II) to establish data-analysis techniques which will account for the amplitude distortion, (III) to set up a notch filter circuit which has a transfer function that is the reciprocal of the accelerometer transfer function, and so on. This paper makes a report of the method as to(III), i. e., set up a few notch filter circuits, it is discussed what happens when the transfer functions, are in discord as to natural frequency of the filter and accelerometer damping vs. filter damping. And especially as for the cantilever strain gauge type accelerometer made by oneself with ease, it was compared and discussed between the ideological value and the experimental value of actual designed circuit in case of the mismatching of the transfer functions, and it was considered whether to be practicable or not, the result of which was as following; the useful frequency range of the accelerometer can be extended to near resonance if (a) the accelerometer mounted natural frequency and the filter center frequency are matched within .+-. 2 percent and (b) the damping ratios are matched within two factors. Therefore, we obtained the good result in improvement for extending frequency response characteristics of accelerometer.

  • PDF

Improved Sensitivity Method for Natural Frequency and Mode Shape of Damped Systems (감쇠 시스템의 고유진동수와 모드의 개선된 만감도 기법)

  • 조홍기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.176-183
    • /
    • 2000
  • A simplified for the eigenpair sensitivities of damped systems is presented. This approach employs a reduced equation to determine the sensitivities of eigenpairs of the damped vibratory systems with distinct eigenvalues. The derivatives of eigenpairs are obtained by solving an algebraic equation with a symmetric coefficient matrix of (n+1) b (n+1) dimension where n is the number of degree of freedom. This is an improved method of the previous work of Lee and Jung. Two equations are used to find eigenvalues derivatives and eigenvector derivatives in their paper. A significant advantage of this approach over Lee and Jung is that one algebraic equation newly developed is enough to compute such eigenvalue derivatives and eigenvector derivatives. Simulation results indicate that the new method is highly efficient in determining the sensitivities of engenpairs of the damped vibratory systems with distrinct eigenvalues.

  • PDF

Optimal Weight Design of Rotor-Bearing Systems Considering Whirl Natural Frequency and Stability (선회 고유진동수와 안정성을 고려한 회전자-베어링 시스템의 중량 최적설계)

  • 이동수;손윤호;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.639-646
    • /
    • 1995
  • The objective of this study is to minimize the weight of a damped anisotropic roto-bearing system considering whirl natural frequency and stability. The system is modeled as an assemblage of rigid disks, flexible shafts and discrete bearings. The system design variables are the crosssectional areas of shaft elements and the properties of bearings. To analyze the system, the polynomial method which is derived by rearranging the calculations performed by a transfer matrix method is adopted. For the optimization, the optimization software IDOL (Integrated Design Optimization Library) which is based on the Augmented Lagrange Multiplier (ALM) method is employed. Also, an analytical design sensitivity analysis of the system is used for high accuracy and efficiency. To demonstrate the usefulness of the proposed optimal design program incorporating analysis, design sensitivity analysis, and optimization modules, a damped anisotropic rotor-bearing system is optimized to obtain 34$ weight reduction.

A study on the dynamic vibration absorber having non-linear spring and linear damper (非線型 스프링과 線型감쇠를 가지는 動吸振器에 관한 硏究)

  • 김광식;안찬우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.473-478
    • /
    • 1987
  • In this paper the optimum values of natural frequency ratio and damping ratio for damped systems were studied by numerical analysis. The relation between the amplitude ratio and frequency ratio obtained for the non-linear dynamic vibration absorber was found and it was compared with that of linear system. The results shows that the optimum frequency ratio decreases and the optimum damping ratio increases when the mass ratio of the damped system increases. The resonance frequency ratio and amplitude ratio decrease as mass ratio increases for the non-linear spring system.

Vibration Characteristics of Boxthorn(Lycium chinense Mill) (구기자 가지의 진동 특성)

  • 서정덕
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.105-114
    • /
    • 2001
  • Modulus of elasticity, modulus of rigidity, damping ratio, and natural frequency of three varieties of boxthorn (Lycium chinense Mill) (Cheongyang #2, Cheongyang gugija, and Cheongyang native) branches were analyzed. Modulus of elasticity and modulus of elasticity and modulus of rigidity of the boxthorn branch was determined using standard formula after simple beam bending and torsion test, respectively, using an universal testing machine. Damping ratio and natural frequency of branches were determined using a system consisted of an accelerometer, a PC equipped with A/D converter, and a software for data analysis. Relationship between the elastic modulus and branch diameter in overall varieties and branch types showed a good correlation (r -0.81). There was, however, no correlation between torsional rigidity and branch diameter. The internal damping results were highly variable and the overall range of the damping ratio of the boxthorn branch was 0.014-0.087, which indicated that the branch was a lightly damped structure. The natural frequency of the boxthorn branch was in the range of 89-363 rad/s for the overall varieties and branch types. A good correlation (r 0.82) existed between the natural frequency and branch diameter in overall varieties and branch type.

  • PDF

Theoretical and experimental modal responses of adhesive bonded T-joints

  • Kunche, Mani Chandra;Mishra, Pradeep K.;Nallala, Hari Babu;Hirwani, Chetan K.;Katariya, Pankaj V.;Panda, Subhransu;Panda, Subrata K.
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.361-369
    • /
    • 2019
  • The modal frequency responses of adhesive bonded T-joint structure have been analyzed numerically and verified with own experimental data. For this purpose, the damped free frequencies of the bonded joint have been computed using a three-dimensional finite element model via ANSYS parametric design language (APDL) code. The practical relevance of the joint structure analysis has been established by comparing the simulation data with the in-house experimental values. Additionally, the influences of various geometrical and material parameters on the damped free frequency responses of the joint structure have been investigated and final inferences discussed in details. It is observed that the natural frequency values increase for the higher aspect ratios of the joint structure. Also, the joint made up of Glass fiber/epoxy with quasi-isotropic fiber orientation indicates more resistance towards free vibration.

Analytical Method to Analyze the Effect of Tolerance on the Modal Characteristic of Multi-body Systems in Dynamic Equilibrium (동적 평형위치에 있는 다물체계의 모드특성에 미치는 공차의 영향 분석을 위한 해석적 방법)

  • Kim, Bum-Suk;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.109-114
    • /
    • 2007
  • Analytical method to analyze the effect of tolerance on the modal characteristic of multi-body systems in dynamic equilibrium position is suggested in this paper. Monte-Carlo Method is conventionally employed to perform the tolerance analysis. However, Monte-Carlo Method spends too much time for analysis and has a greater or less accuracy depending on sample condition. To resolve these problems, an analytical method is suggested in this paper. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivities of damped natural frequencies and the transfer function can be calculated at the dynamic equilibrium position. The effect of tolerance on the modal characteristic can be analyzed from tolerance analysis method.

  • PDF

In-line Oil Viscosity Sensor Implementing An Elastomagnetic Ribbon Resonance (자기탄성체 리본의 공진을 이용한 인-라인 오일 점도센서)

  • Kong, H.;Han, H.G.;Markova, L.V.
    • Tribology and Lubricants
    • /
    • v.26 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • A new magnetoelastic technique of oil viscosity measurement, where the oil viscosity is estimated by frequency shift of natural oscillations of magnetoelastic ribbon, is implemented in this study. Laboratory tests of the detector prototype are performed for measurement of viscosity of base synthetic and mineral oils. It was found that measurement accuracy was better when damping factor was estimated in comparison with accuracy of frequency of damped oscillations. Thus the oil viscosity was calibrated as a function of number of pulses of the damped oscillations of magnetoelastic ribbon. Result generally showed that developed detector is promising for in line oil viscosity measurement in wide viscosity range from 10 cSt up to 600 cSt, while the viscosity measurement was relatively instable when the viscosity of test oil was over 400 cSt.

A Study on the Uncertainty of Estimation in Vibration Test for the Machine Parts (가공 기계부품 고유진동수 해석과 측정에 관한 연구)

  • Hwang, Jae-Deok;Kim, Chae-Sil;Cho, Sung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2014
  • Resonance refers to the magnification of a structural response which occurs when a linear lightly damped system is driven with a sinusoidal input at its natural frequency. An exploratory vibration test (a natural frequency measurement test) is very important for the vibration testing of machine parts, as the value measured in an actual laboratory affects test results. For this reason, it is necessary to estimate the measurement uncertainty to verify the reliability of this type of test. In this study, measurement uncertainty is estimated based on three uncertainty factors. The uncertain factors are the measured points in the machine parts, the resolution of the vibration equipment, and uncertainty of the calibration certificate.

Vibration Characteristics of Boxthorn (Lycium Chinense Mill) Branch (구기자 가지의 진동 특성)

    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2001.02a
    • /
    • pp.292-309
    • /
    • 2001
  • Modulus of elasticity, modulus of rigidity, damping ratio, and natural frequency of three varieties of boxthorn(Lycium chinense Mill) (Cheongyang #2, Cheongyang gugija, and Cheongyang native) branches were analyzed. Modulus of elasticity and modulus of rigidity of the boxthorn branch was determined using standard formula after simple beam bending and torsion test, respectively, using an universal testing machine. Damping ratio and natural frequency of branches were determined using a system consisted of an accelerometer, a PC equipped with A/D converter, and a software for data analysis. Relationship between the elastic modulus and branch diameter in overall varieties and branch types showed a good correlation (r$\cong$-0.81). There was, however, no correlation between torsional rigidity and branch diameter. The internal damping results were highly variable and the overall range of the damping ratio of the boxthorn branch was 0.014 -0.087, which indicated that the branch was a lightly damped structure. The natural frequency of the boxthorn branch was in the range of 89-363 rad/s for the overall varieties and branch types. A good correlation (r$\cong$0.82) existed between the natural frequency and branch diameter in overall varieties and branch type.

  • PDF