• Title/Summary/Keyword: Damaged Layer

Search Result 311, Processing Time 0.024 seconds

Differential Expression Patterns of Gangliosides in the Ischemic Cerebral Cortex Produced by Middle Cerebral Artery Occlusion

  • Kwak, Dong Hoon;Kim, Sung Min;Lee, Dea Hoon;Kim, Ji Su;Kim, Sun Mi;Lee, Seo Ul;Jung, Kyu Yong;Seo, Byoung Boo;Choo, Young Kug
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.354-360
    • /
    • 2005
  • Neuronal damage subsequent to transient cerebral ischemia is a multifactorial process involving several overlapping mechanisms. Gangliosides, sialic acid-conjugated glycosphingolipids, reduce the severity of acute brain damage in vitro. However their in vivo effects on the cerebral cortex damaged by ischemic infarct are unknown. To assess the possible protective role of gangliosides we examined their expression in the cerebral cortex damaged by ischemic infarct in the rat. Ischemia was induced by middle cerebral artery (MCA) occlusion, and the resulting damage was observed by staining with 2, 3, 5-triphenylterazolium chloride (TTC). High-performance thin-layer chromatography (HPTLC) showed that gangliosides GM3 and GM1 increased in the damaged cerebral cortex, and immunofluorescence microscopy also revealed a significant change in expression of GM1. In addition, in situ hybridization demonstrated an increase in the mRNA for ganglioside GM3 synthase. These results suggest that gangliosides GM1 and GM3 may be synthesized in vivo to protect the cerebral cortex from ischemic damage.

Effect of Hydrodemolition on Bonding Strengthof Structures Repaired or Rehabilitated with VES-LMC (VES-LMC로 보수.보강된 구조물의부착강도에 미치는 Hydrodemolition의 영향)

  • Kim, Seong-Kwon;Shim, Do-Sick;Lee, Bong-Hak;Yun, Kyung-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.397-400
    • /
    • 2006
  • Most of the civil structures in Korea and abroad have many kinds of damages when they are facing over-loaded traffics, long-term serviceability, and severe environmental conditions. Repair, rehabilitation, and retrofit are important for maintaining the serviceability of structures. In recent year, VES-LMC has been widely used as repair material for bridge deck repair and rehabilitation, because the VES-LMC has a various benefits such as traffic opening after 3 hours of curing, higher durability and bond strength. In case of any structure repaired or rehabilitated with VES-LMC, those were influenced capacity of bond between the base layer of slab and VES-LMC as well as physical properties of each other materials. The capacity of bond depended on purity of interface, micro cracks, curing of VES-LMC and so like. A kind of popular concrete repair technique, High pressure water jetting equipment is extremely efficient at removing damaged concrete. Removing damaged or poor quality concrete from sensitive structures such as bridge, tunnels, multi-story car parking decks and runways, using the high pressure water jetting could remove damaged or poor quality concrete remaining healthy and sound concrete. Accordingly, the purpose of this study is that it was to evaluate effect of hydrodemolition on the bond strength of VES-LMC overlay compared with effects of other method such as breaker, untreated. Also, it was evaluated the effect of surface moisture.

  • PDF

Characteristics of Microbial Community Enzyme Activity and Substrate Availability of Damaged Soil (훼손 토양의 미생물군집 효소 활성과 기질 이용성 특성)

  • Ji Seul Kim;Gyo-Cheol Jeong;Myoung Hyeon Cho;Eun Young Lee
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.68-77
    • /
    • 2023
  • The effect of soil damage on the physicochemical characteristics and activity of the soil microbial community is not well known. This study investigates this relationship by analyzing 11 soil samples collected from various points of soil damage across Gyeonggi-do. Soil damage resulted from forest fires, landslides, and development areas, with their impacts most severe on the topsoil layer (0-30 cm). Dehydrogenase and β-glucosidase activities were notably higher at locations damaged by forest fires compared to other sites. While enzyme activities in soils influenced by landslides and development areas were relatively low, sites with a pollution history exhibited elevated dehydrogenase activity, likely due to past microbial response to the pollution. Additionally, an assessment of carbon substrate usability by soil microorganisms indicated higher substrate availability in areas impacted by forest fires, contrasting with lower availability in landslide and development sites. Statistical analysis revealed a positive correlation between organic content of sand and clay and microbial activity. These findings provide valuable insights into soil damage and associated restoration research, as well as management strategies.

An Enhanced UBR+(EUBR+) scheme to improve the performance of TCP-over-ATM

  • Kim, Chul;Kim, Young-Tak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.9A
    • /
    • pp.1535-1541
    • /
    • 2001
  • TCP is the most widely-used transport layer protocol in current Internet, while ATM technology is used to increase the data communication speed at data link layer and network layer. In the TCP-over-ATM architecture, the most significant problems are (i) the partial packet discarding problem, and (ii) the TCP window timeout problem. Several approaches have been proposed to solve the partial packet discard problem and the timeout problem individually, but none of them considered the two problems together. In this paper, we propose an enhanced UBR+ scheme which supports fairness among the TCP connections using UBR+ scheme, and provides protection of damaged VC from the multiple packet losses in the same TCP sliding window. To analyze its performance, we simulate the proposed scheme using OPNET. The simulation results show that the proposed scheme supports fairness, and also increases the throughput by reducing the probability of multiple cell losses in the same TCP window.

  • PDF

The characteristics of anti-erosion for MgO protecting layer in plasma display panel (플라즈마 디스플레이 보호막으로 사용되는 마그네슘 산화막(MgO)의 내식각 특성)

  • 최훈영;이석현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.163-169
    • /
    • 2000
  • In this paper, we showed the erosion characteristic of MgO protector layer releated to lifetime of plasma display panel(PDP). We observed MgO erosion characteristic as a functions of deposition conditions, pressure and distance between electrodes. In RIE condition of Xe gas, the lowest erosion rate appears in the conditions of no heating bias voltage -30V and pressure 5mtorr. In general, as deposition rate increases, erosion rate decreases. In real panel, when the gap distance between electrodes is narrow and the pressure is low, the heavy plasma damage appears. Also, the surfaces between electrodes and on the bus electrode are extremely damaged.

  • PDF

IR Camera Technique Application for Evaluation of Gas Turbine Blades Covering Integrity (가스터빈의 코팅층 건정성 평가를 위한 적외선 열화상 카메라 기법 활용)

  • Kim J.Y.;Yang D.J.;Choi C.J.;Park S.G.;Ahn Y.S.;Jeong G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.192-196
    • /
    • 2005
  • Key part of main equipment in a gas turbine may be likely to be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The number of parts for maintenance also increases, but diagnostics technology fur the maintenance actually does not catch up with the demand. Blades are made of precipitation hardening Ni superalloy IN738 and the like for keeping hot strength. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc. in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take long time and also require much cost. In this study, defect diagnostics were tested for the coating layer of an industrial gas turbine blade, using an infraredthermography camera. Since the infrared thermography method can check a temperature distribution on a wide range of area by means of non-contact, it can advantageously save expenses and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this essay includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing for analyzing defects on the coating layer of the gas turbine blade.

  • PDF

황동볼트 손상원인 분석사례

  • Jeong, Nam-Geun
    • 열병합발전
    • /
    • s.30
    • /
    • pp.21-25
    • /
    • 2002
  • According to recent Korea Electric Power Company report, yearly distribution line brass cramp bolts failure summed up to 4,400 cases emerging as one of main local break-down causes. Naturally, the need for the investigation was proposed To determine the root cause of the cramp bolt failures, mechanical and metallurgical investigation were performed for 90 samples which collected from various sites. For the understanding of the geometric characteristics, stress distribution was evaluated by CAE program and proof load of each bolts was tested. The SEM&EDS was used for metallurgical investigation. Through the investigation, the root causes of failures were confirmed. All damaged bolts showed intergrannular fracture mode and the all fractured bolt showed ß phase morphology contrast to the a&ß mixture morphology of the non-damaged samples. Additionally, EDS analysis confirmed the existence of lead rich layer on grain boundaries.

  • PDF

Ni Plating Technology for PWR Reactor Vessel Cladding Repair

  • Hwang, Seong Sik;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.190-195
    • /
    • 2019
  • SA508 low-alloy steel for a reactor vessel was exposed to primary water in a pressurized water reactor (PWR) plant because the cladding layer of type 309 stainless steel for the RPV was removed, due to an accident in which the detachment of the thermal sleeve occurred. The major advantage of the electrochemical deposition (ECD) Ni plating technique is that the reactor pressure vessel can be repaired without significant thermal effects, and Ni has solid corrosion resistance that can withstand boric acid. The corrosion rate assessment of the damaged part was performed, and its trend was analyzed. Essential variables of the Ni plating for repair of the damaged part were derived. These conditions are applicable variables for the repair plating device, and have been carefully adjusted using the repair plating device. The process for establishing ASME technical standards called Code Case N-840 is described. The process of developing Ni-plating devices, and the electroplating procedure specification (EPS) are described.

Comparison of Corrosion Behavior of CrN Coated SUS316L with Different Layer Structure for Polymer Electrode Membrane Fuel Cell Bipolar Plate (CrN 코팅구조에 따른 Polymer Electrode Membrane Fuel Cell 금속분리판의 부식특성 비교)

  • Paik, Jung-Ho;Han, Won-Kyu;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.187-193
    • /
    • 2010
  • Chromium nitride (CrN) samples with two different layer structures (multilayer and single layer) were coated on bipolar plates of polymer electrolyte membrane fuel cells (PEMFC) using the reactive sputtering method. The effects with respect to layer structure on corrosion resistance and overall cell performance were investigated. A continuous and thin chromium nitride layer ($Cr_{0.48}\;N_{0.52}$) was formed on the surface of the SUS 316L when the nitrogen flow rate was 10 sccm. The electrochemical stability of the coated layers was examined using the potentiodynamic and potentiostatic methods in the simulated corrosive circumstances of the PEMFC under $80^{\circ}C$. Interfacial contact resistance (ICR) between the CrN coated sample and the gas diffusion layer was measured by using Wang's method. A single cell performance test was also conducted. The test results showed that CrN coated SUS316L with multilayer structure had excellent corrosion resistance compared to single layer structures and single cell performance results with $25\;cm^2$ in effective area also showed the same tendency. The difference of the electrochemical properties between the single and multilayer samples was attributed to the Cr interlayer layer, which improved the corrosion resistance. Because the coating layer was damaged by pinholes, the Cr layer prevented the penetration of corrosive media into the substrate. Therefore, the CrN with a multilayer structure is an effective coating method to increase the corrosion resistance and to decrease the ICR for metallic bipolar plates in PEMFC.

Evaluation of Degradation Characteristics of Thermal Barrier Coating on Gas Turbine Blades

  • Jung, Yongchan;Kim, Mintae;Lee, Juhyeung;Ahn, Jamin;Kim, Kihong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.273-278
    • /
    • 2016
  • In order to evaluate the lifespan of high-temperature parts with thermal barrier coating in gas turbines used for power generation, this study was performed on an 80 MW-class gas turbine exceeding 24 k equivalent operating hours. Degradation characteristics were evaluated by analyzing the YSZ (Yttria Stabilized Zirconia) top coat, which serves as the thermal barrier coating layer, the NiCrAlY bond coat, and interface layers. Microstructural analysis of the top, middle, and bottom sections showed that Thermal Growth Oxide (TGO) growth, Cr precipitate growth within the bond coat layer, and formation of diffusion layer occur actively in high-temperature sections. These microstructural changes were consistent with damaged areas of the thermal barrier coating layer observed at the surface of the used blade. The distribution of Cr precipitates within the bond coat layer, in addition to the thickness of TGO, is regarded as a key indicator in the evaluation of degradation characteristics.