• Title/Summary/Keyword: Damage rate

Search Result 2,351, Processing Time 0.033 seconds

Damage Mechanisms of a Piezoelectric Actuator under Electric Fatigue Loading (전기적 피로하중을 받는 압전 작동기의 손상 메커니즘)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.856-865
    • /
    • 2008
  • Damage mechanisms in bending piezoelectric actuators under electric fatigue loading are addressed in this work with the aid of an acoustic emission (AE) technique. Electric cyclic fatigue tests have been performed up to $10^7$ cycles on the fabricated bending piezoelectric actuators. An applied electric loading range is from -6 kV/cm to +6 kV/cm, which is below the coercive field strength of the PZT ceramic. To confirm the fatigue damage onset and its pathway, the source location and distributions of the AE behavior in terms of count rate and amplitude are analyzed over the fatigue range. It is concluded that electric cyclic loading leads to fatigue damages such as transgranular damages and intergranular cracking in the surface of the PZT ceramic layer, and intergranular cracking even develops into the PZ inner layer, thereby degrading the displacement performance. However, this fatigue damage and cracking do not cause the final failure of the bending piezoelectric actuator loaded up to $10^7$ cycles. Investigations of the AE behavior and the linear AE source location reveal that the onset time of the fatigue damage varies considerably depending on the existence of a glass-epoxy protecting layer.

Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants

  • Lee, Jong Kyeom;Kim, Tae Yun;Kim, Hyun Su;Chai, Jang-Bom;Lee, Jin Woo
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1280-1290
    • /
    • 2016
  • This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

Damage and fracture processes of concrete using acoustic emission parameters

  • Fan, Xiangqian;Hu, Shaowei;Lu, Jun
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.267-278
    • /
    • 2016
  • In order to observe the internal damage of concrete in real time, we introduced acoustic emission nondestructive detecting technology into a series of fracture tests; the test results revealed the whole process that concrete undergoes when it sustains damage that leads to failure, according to the change rules of the acoustic emission parameters. The results showed that both the initiation and unstable loads can be accurately determined using the abrupt change of the acoustic emission rate curves and the turning point of the acoustic emission parameters' accumulative curves. The whole process, from damage to failure, includes five phases, beginning with damage, such as cracking, a stable crack growth process, a critical unstable stage, and unstable propagation. The brittle fracture characteristics of concrete change when steel bars are joined, because the steel bars and the concrete structure bond, which causes an increase in the acoustic emission signals within the fracture process of the reinforced concrete. The unstable propagation stage is also extended. Our research results provide a valid methodology and technical explanations, which can help researchers to monitor the cracking process of concrete structures, in real time, during actual projects.

Homogenized Elastic-plastic Relation based on Thermodynamics and Strain Localization Analyses for Particulate Composite (열역학 기반 내부 변수를 이용한 균질화 탄소성 구성방정식 및 입자강화 복합재에서의 소성변형집중)

  • S. J. Yun;K. K. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.18-35
    • /
    • 2024
  • In the present work, the evolution rules for the internal variables including continuum damage factors are obtained using the thermodynamic framework, which are in turn facilitated to derive the elastic-plastic constitutive relation for the particulate composites. Using the Mori-Tanaka scheme, the homogenization on state and internal variables such as back-stress and damage factors is carried out to procure the rate independent plasticity relations. Moreover, the degradation of mechanical properties of constituents is depicted by the distinctive damages such that the phase and interfacial damages are treated individually accordingly, whereas the kinematic hardening is depicted by combining the Armstrong-Frederick and Phillips' back-stress evolutions. On the other hand, the present constitutive relation for each phase is expressed in terms of the respective damage-free effective quantities, then, followed by transformation into the damage affected overall nominal relations using the aforementioned homogenization concentration factors. An emphasis is placed on the qualitative analyses for strain localization by observing the perturbation growth instead of the conventional bifurcation analyses. It turns out that the proposed constitutive model offers a wide range of strain localization behavior depending on the evolution of various internal variable descriptions.

Study on Evaluating the Damage Fracture Behavior of the Carbon Fiber Reinforced Composite Material by Acoustic Emission Characteristics (음향방출특성에 의한 탄소섬유강화 복합재의 손상파괴거동에 관한 연구)

  • Kwon, Oh-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • An approach for the damage of delamination which is the major concern during mechanical working for composite laminate material is proposed based on linear elastic fracture mechanics. This paper presents method evaluating of damage crack length using by average thrust force with AE characteristics. Also, the relations of AE characteristics are obtained from delamination damages. We found the onset ply of the delamination and a critical energy release rate and expressed a stress intensity factor by AEcount equation.

Low cycle fatigue damage assessment in steel beams

  • Daali, M.L.;Korol, R.M.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.341-358
    • /
    • 1995
  • The results of a series of ten W-shaped test specimens subjected to monotonic, quasi-static cyclic loading and fatigue type of loading in the form of constant amplitude tests are presented. The objectives were to assess and compare the rotation capacity and energy absorption of monotonically and cyclically loaded beams, and for the latter specimens to document the deterioration in the form of low cycle fatigue due to local buckling. In addition, strength and energy dissipation deterioration and damage models have been developed for the steel beam section under consideration. Finally, a generalized model which uses plate slenderness values and lateral slenderness is proposed for predicting rate in strength deterioration per reversal and cumulated damage after a given number of reversals.

Reliability Estimation of Gas Pipelines Damaged by External Corrosion (외부부식에 의해 손상된 배관의 신뢰성평가)

  • Jin, Yeung-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.1-6
    • /
    • 2006
  • It is well known that pipelines have the highest capacity and are the safest and least environmentally disruptive form of transporting oil and gas. However, pipeline damage caused by both internal and external corrosion is a major concern threatening the reliability of oil and gas transportation and the soundness of the pipeline structure. In this study, we estimate the allowable damage by comparing the ASTM B31G code to a modified theory considering diverse detailed corrosive forms. The ASTM B31 G code has been developed as the evaluation method for reliability and incident prevention of damaged pipelines based on the amount of loss due to corrosion and the yield strength of materials. Furthermore, we suggest a method for estimating the expected life span of used pipelines by utilizing the reliability method based on major variables such as the depth and length of damage and the corrosion rate affecting the life expectancy of the pipelines.

Deterioration of Fibers and Their Products by Fungi (Part II) -Damage of Cellulosic Fabrics by Fungi- (사상균에 의한 섬유 및 섬유제품의 소화에 관하여 (제 2포) -사상균에 의한 면직물의 손해도-)

  • 김효은
    • Journal of the Korean Home Economics Association
    • /
    • v.19 no.4
    • /
    • pp.9-15
    • /
    • 1981
  • damages of cotton cloth and characteristics of fabroid degradation were studied by Chaetomium globosum and Aspergillus niger which presupposed as powerful erosive fungi to cellulose fiber by means of tensile strength. The results obtained are as follows: 1. the growth(rate) of fungi in malt extract agar was superior to potato agar for two weeks. 2. Chaetomium globosum showed mostly severe damage t the cotton cloth in malt extract agar media at pH 4.5. 3. Tensile strength was reduced with time by Aspergillus niger-coenzyme and Chaetomium globosum-coenzyme reaction. In comparison with Chaetomium globosum and Aspergillus niger, the former weaken tensile strength about 15.8% and the latter enfeebled 10.0% after 124 hours. 4. after 30 days the breeding of fungi in pH 4.5 malt extract agar media, critical damage of cotton cloth was observe, I. e., 92.4% damage by chaetomium globosum and 74.9% lose by aspergillus nige respectively.

  • PDF

The Effect of Changes in Early Low-Temperatures in Early-Frost Damage Depth (초기 저온의 온도변화가 초기동해 깊이에 미치는 영향)

  • Kim, Tae-Woo;Kim, Min-Sang;Moon, Byeong-Yong;Lee, Jea-Hyun;Kim, Dong-Gyu;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.207-208
    • /
    • 2017
  • The current study assumed a condition in which concrete curing was not completed correctly in the winter, in order to analyze the effect of changes in early low-temperatures in early-frost damage depth. As a result, lower external temperature early on after depositing the concrete greatly reduced the temperature in the upper parts of the concrete, and it delayed the time during which the concrete temperature restored. In addition, for early-frost damages, lower early temperature increased the expansion of frozen water, which in turn relaxes the concrete structures and increases the absorption rate, ultimately extending the depth of early-frost damage.

  • PDF

Structural damage detection based on Chaotic Artificial Bee Colony algorithm

  • Xu, H.J.;Ding, Z.H.;Lu, Z.R.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1223-1239
    • /
    • 2015
  • A method for structural damage identification based on Chaotic Artificial Bee Colony (CABC) algorithm is presented. ABC is a heuristic algorithm with simple structure, ease of implementation, good robustness but with slow convergence rate. To overcome the shortcoming, the tournament selection mechanism is chosen instead of the roulette mechanism and chaotic search mechanism is also introduced. Residuals of natural frequencies and modal assurance criteria (MAC) are used to establish the objective function, ABC and CABC are utilized to solve the optimization problem. Two numerical examples are studied to investigate the efficiency and correctness of the proposed method. The simulation results show that the CABC algorithm can identify the local damage better compared with ABC and other evolutionary algorithms, even with noise corruption.