• Title/Summary/Keyword: Damage probability

Search Result 580, Processing Time 0.021 seconds

Developing and Evaluating Damage Information Classifier of High Impact Weather by Using News Big Data (재해기상 언론기사 빅데이터를 활용한 피해정보 자동 분류기 개발)

  • Su-Ji, Cho;Ki-Kwang Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.7-14
    • /
    • 2023
  • Recently, the importance of impact-based forecasting has increased along with the socio-economic impact of severe weather have emerged. As news articles contain unconstructed information closely related to the people's life, this study developed and evaluated a binary classification algorithm about snowfall damage information by using media articles text mining. We collected news articles during 2009 to 2021 which containing 'heavy snow' in its body context and labelled whether each article correspond to specific damage fields such as car accident. To develop a classifier, we proposed a probability-based classifier based on the ratio of the two conditional probabilities, which is defined as I/O Ratio in this study. During the construction process, we also adopted the n-gram approach to consider contextual meaning of each keyword. The accuracy of the classifier was 75%, supporting the possibility of application of news big data to the impact-based forecasting. We expect the performance of the classifier will be improve in the further research as the various training data is accumulated. The result of this study can be readily expanded by applying the same methodology to other disasters in the future. Furthermore, the result of this study can reduce social and economic damage of high impact weather by supporting the establishment of an integrated meteorological decision support system.

Seismic fragility assessment of shored mechanically stabilized earth walls

  • Sheida Ilbagitaher;Hamid Alielahi
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.277-293
    • /
    • 2024
  • Shored Mechanically Stabilized Earth (SMSE) walls are types of soil retaining structures that increase soil stability under static and dynamic loads. The damage caused by an earthquake can be determined by evaluating the probabilistic seismic response of SMSE walls. This study aimed to assess the seismic performance of SMSE walls and provide fragility curves for evaluating failure levels. The generated fragility curves can help to improve the seismic performance of these walls through assessing and controlling variables like backfill surface settlement, lateral deformation of facing, and permanent relocation of the wall. A parametric study was performed based on a non-linear elastoplastic constitutive model known as the hardening soil model with small-strain stiffness, HSsmall. The analyses were conducted using PLAXIS 2D, a Finite Element Method (FEM) program, under plane-strain conditions to study the effect of the number of geogrid layers and the axial stiffness of geogrids on the performance of SMSE walls. In this study, three areas of damage (minor, moderate, and severe) were observed and, in all cases, the wall has not completely entered the stage of destruction. For the base model (Model A), at the highest ground acceleration coefficient (1 g), in the moderate damage state, the fragility probability was 76%. These values were 62%, and 54%, respectively, by increasing the number of geogrids (Model B) and increasing the geogrid stiffness (Model C). Meanwhile, the fragility values were 99%, 98%, and 97%, respectively in the case of minor damage. Notably, the probability of complete destruction was zero percent in all models.

A New Quantification Method for Multi-Unit Probabilistic Safety Assessment (다수기 PSA 수행을 위한 새로운 정량화 방법)

  • Park, Seong Kyu;Jung, Woo Sik
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.97-106
    • /
    • 2020
  • The objective of this paper is to suggest a new quantification method for multi-unit probabilistic safety assessment (PSA) that removes the overestimation error caused by the existing delete-term approximation (DTA) based quantification method. So far, for the actual plant PSA model quantification, a fault tree with negates have been solved by the DTA method. It is well known that the DTA method induces overestimated core damage frequency (CDF) of nuclear power plant (NPP). If a PSA fault tree has negates and non-rare events, the overestimation in CDF drastically increases. Since multi-unit seismic PSA model has plant level negates and many non-rare events in the fault tree, it should be very carefully quantified in order to avoid CDF overestimation. Multi-unit PSA fault tree has normal gates and negates that represent each NPP status. The NPP status means core damage or non-core damage state of individual NPPs. The non-core damage state of a NPP is modeled in the fault tree by using a negate (a NOT gate). Authors reviewed and compared (1) quantification methods that generate exact or approximate Boolean solutions from a fault tree, (2) DTA method generating approximate Boolean solution by solving negates in a fault tree, and (3) probability calculation methods from the Boolean solutions generated by exact quantification methods or DTA method. Based on the review and comparison, a new intersection removal by probability (IRBP) method is suggested in this study for the multi-unit PSA. If the IRBP method is adopted, multi-unit PSA fault tree can be quantified without the overestimation error that is caused by the direct application of DTA method. That is, the extremely overestimated CDF can be avoided and accurate CDF can be calculated by using the IRBP method. The accuracy of the IRBP method was validated by simple multi-unit PSA models. The necessity of the IRBP method was demonstrated by the actual plant multi-unit seismic PSA models.

Scenario-Based Earthquake Damage Estimation of Bridge Structures in Daegu City Using Hazus-MH Methodology (Hazus-MH 방법을 이용한 대구시 교량의 시나리오 지진에 의한 피해 예측)

  • Kim, Siyun;Kim, Sung Jig;Chang, Chunho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.89-96
    • /
    • 2018
  • The paper presents the damage estimation of bridge structures in Daegu city based on the scenario-based earthquakes. Since the fragility curves for domestic bridge strucures are limited, the Hazus methodology is employed to derive the fragility curves and estimate the damage. A total of four earthuquake scenarios near Daegu city are assumed and structure damage is investigated for 81 bridge structures. The seismic fragility function and damage level of each bridge had adopted from the analytical method in HAZUS and then, the damage probability using seismic fragility function for each bridge was evaluated. It was concluded that the seismic damage to bridges was higher when the magnitude of the earthquake was large or nearer to the epicenter.

A Study of Optimal Aircraft Allocation Model for Attacking Fixed Target (고정목표 공격을 위한 최적 항공기 할당모형에 관한 연구)

  • Heo Jong-Jun;Kim Chung-Yeong
    • Journal of the military operations research society of Korea
    • /
    • v.12 no.2
    • /
    • pp.22-36
    • /
    • 1986
  • The study is to design optimal aircraft allocation model for sufficing the required level of damage, minimizing attrition cost when the aircrafts attack the enemy's fixed target. When friendly aircraft attacks enemy target, the aircraft will suffer the loss due to the enemy's anti-aircraft weapons and aircraft. For this study, it is required that the probability of target damage by the type of aircraft, level of target damage and attrition cost are computed for the application of this model.

  • PDF

Prediction of Wind Damage Risk based on Estimation of Probability Distribution of Daily Maximum Wind Speed (일 최대풍속의 추정확률분포에 의한 농작물 강풍 피해 위험도 판정 방법)

  • Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.130-139
    • /
    • 2017
  • The crop damage caused by strong wind was predicted using the wind speed data available from Korean Meteorological Administration (KMA). Wind speed data measured at 19 automatic weather stations in 2012 were compared with wind data available from the KMA's digital forecast. Linear regression equations were derived using the maximum value of wind speed measurements for the three-hour period prior to a given hour and the digital forecasts at the three-hour interval. Estimates of daily maximum wind speed were obtained from the regression equation finding the greatest value among the maximum wind speed at the three-hour interval. The estimation error for the daily maximum wind speed was expressed using normal distribution and Weibull distribution probability density function. The daily maximum wind speed was compared with the critical wind speed that could cause crop damage to determine the level of stages for wind damage, e.g., "watch" or "warning." Spatial interpolation of the regression coefficient for the maximum wind speed, the standard deviation of the estimation error at the automated weather stations, the parameters of Weibull distribution was performed. These interpolated values at the four synoptic weather stations including Suncheon, Namwon, Imsil, and Jangsu were used to estimate the daily maximum wind speed in 2012. The wind damage risk was determined using the critical wind speed of 10m/s under the assumption that the fruit of a pear variety Mansamgil would begin to drop at 10 m/s. The results indicated that the Weibull distribution was more effective than the normal distribution for the estimation error probability distribution for assessing wind damage risk.

Windborne debris risk analysis - Part I. Introduction and methodology

  • Lin, Ning;Vanmarcke, Erik
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.191-206
    • /
    • 2010
  • Windborne debris is a major cause of structural damage during severe windstorms and hurricanes owing to its direct impact on building envelopes as well as to the 'chain reaction' failure mechanism it induces by interacting with wind pressure damage. Estimation of debris risk is an important component in evaluating wind damage risk to residential developments. A debris risk model developed by the authors enables one to analytically aggregate damage threats to a building from different types of debris originating from neighboring buildings. This model is extended herein to a general debris risk analysis methodology that is then incorporated into a vulnerability model accounting for the temporal evolution of the interaction between pressure damage and debris damage during storm passage. The current paper (Part I) introduces the debris risk analysis methodology, establishing the mathematical modeling framework. Stochastic models are proposed to estimate the probability distributions of debris trajectory parameters used in the method. It is shown that model statistics can be estimated from available information from wind-tunnel experiments and post-damage surveys. The incorporation of the methodology into vulnerability modeling is described in Part II.

Seismic Risk Analysis of Reinforced Concrete Bridge Piers using Local Damage (국부손상을 이용한 RC교각의 지진위험도 분석)

  • Lee, Dae-Hyoung;Kim, Hyun-Jun;Park, Chang-Ky;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.194-197
    • /
    • 2006
  • This study represents results of fragility curve development for 4-span continuous bridge. 2 type bridge model is chosen frame type and 2-roller 1-hinge type. To research the response of bridge under earthquake excitation, Monte Carlo simulation is performed to study nonlinear dynamic analysis. For nonlinear time history analysis a set of 150 synthetic time histories were generated. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. Five damage states were defined to express the condition of damage based on the actual experimental damage data of bridge column. As a result of this research, the value of damage probability corresponding to each damage state were determined and frame type bridge are favorable under seismic event.

  • PDF

Probabilistic Modeling for Evaluation of Information Security Investment Portfolios (확률모형을 이용한 정보보호 투자 포트폴리오 분석)

  • Yang, Won-Seok;Kim, Tae-Sung;Park, Hyun-Min
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.3
    • /
    • pp.155-163
    • /
    • 2009
  • We develop a probability model to evaluate information security investment portfolios. We assume that organizations install portfolios of information security countermeasures to mitigate the damage such as loss of the transaction being processed, damage of hardware and data, etc. A queueing model and Its expected value analysis are used to derive the lost cost of transactions being processed, the replacement cost of hardwares, and the recovery cost of data. The net present value for each portfolio is derived and organizations can select the optimal information security investment portfolio by comparing portfolios.

Computing Probability Flood Runoff for Flood Forecasting & Warning System - Computing Probability Flood Runoff of Hwaong District - (홍수 예.경보 체계 개발을 위한 연구 - 화옹호 유역의 유역 확률홍수량 산정 -)

  • Kim, Sang-Ho;Kim, Han-Joong;Hong, Seong-Gu;Park, Chang-Eoun;Lee, Nam-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.23-31
    • /
    • 2007
  • The objective of the study is to prepare input data for FIA (Flood Inundation Analysis) & FDA (Flood Damage Assessment) through rainfall-runoff simulation by HEC-HMS model. For HwaOng watershed (235.6 $km^{2}$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS basin input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. HEC-HMS was applied to simulate rainfall-runoff relation to frequency storm at the HwaOng watershed. The results will be used for mitigating and predicting the flood damage after river routing and inundation propagation analysis through various flood scenarios.