• Title/Summary/Keyword: Damage probability

Search Result 591, Processing Time 0.032 seconds

A Study on the Volcanic Ash Damage Sector Selection based on the Analysis of Overseas Cases and Domestic Spatial Information (해외 사례 분석과 국내 공간정보 분석을 통한 화산재 피해 분야 선정)

  • Han, Hyeon-gyeong;Baek, Won-kyung;Jung, Hyung-sup;Kim, Miri;Lee, Moungjin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.751-761
    • /
    • 2019
  • Mt. Baekdu, Mt. Aso, Mt. Sakurajima, Mt. Kikai and etc are distributed around the Korean Peninsula. Recently signs of eruption of Mt. Baekdu are increasing, raising concerns over possible damage to volcanic ash from seasonal winds during the winter eruption. Therefore, detailed procedures for investigation and countermeasures for volcanic ash spread and damage are required. But the standards for the warning and alarm signal of volcanic ash presented by Korea Ministry of Government Legislation are vague, with "when damage is expected" and "when serious damage is expected". In this study, to analyze the damage threshold and to apply the cases of overseas damage to the country, a survey was conducted on the establishment of domestic spatial information by public institutions with public confidence. As a result of the investigation of damage from volcanic ash overseas, the details of the damage cases were different depending on the type of life or income sources of each country. Therefore, instead of applying the volcanic ash damage cases abroad in Korea, spatial information analysis was performed to reflect domestic social and natural characteristics. In addition, we selected the areas to be considered in the event of volcanic ash damage in Korea. Finally, domestic volcanic ash damages should be classified as health, residential, road, railroad, aviation, power, water, agriculture, livestock, forest, and soil. When establishing the volcanic ash alarm optimized for Korea in the future, overseas volcanic ash damage cases and domestic spatial information construction in this study will be helpful in policy establishment.

Cost-effective Reliability of RC structure in Korea under earthquake (철근콘크리트구조의 경제적인 내진 신뢰성)

  • ;Alfred H-S. Ang
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.137-148
    • /
    • 1997
  • 지진이 발생하는 환경에서 철근콘크리트구조의 신뢰성을 수명주기비용에 근거하여 체계적으로 평가하는 방법을 제시하였다. 구조물의 기능성과 경제적인 효용성을 나타내기 위하여 각각 손상확률과 평균수명 주기비용의 개념을 사용하였다. 생애주기 동안 발생할 수 있는 지진에 의하여 구조물이 입게 될 손상을 보상하기 위하여 소요되는 평균손상비용을 평균수명주기비용의 주요 항목으로 고려하여 분석하였다. 구조물의 다양한 손상상태에서 손상비용을 나타내기 위해 요구되는 비용함수는 Park-Ang 손상지수의 중앙값을 독립변수로 하는 함수로 가정하였다. 지진에 의한 구조물의 손상해석은 UCI에서 개발된 SMART-DRAIN의 시뮬레이션기법을 사용하여 그 불확실성을 고려하였다. 제시된 방법을 현행 규준에 의하여 설계된 7층 사무실 건물에 적용하여 그 가능성을 살펴보았다.

A Study on Fatigue Life Distribution of SM45C under Constant Rotating Bending Stress (SM45C의 회전굽힘 응력하의 피로수명분포에 관한 연구)

  • Pyo, Pyo,Dong-Keun;Park, Jong-U
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.85-93
    • /
    • 1991
  • 피로 파괴연구의 급격한 발전에 따라 최근의 기계나 구조물들은 많은 분야에서 손상허용설계원리에 근거하여 설계되고 있다. 이러한 상황 하에서 피로파손의 정확한 특성을 밝히는 것은 신뢰성을 고려한 기계나 구조물의 설계에 있어 가장 중요한 요인이 된다. 피로파손은 많은 랜덤요소를 내포하고 있으므로 실험결과 분석 및 수명예측을 분석하기 위해서는 통계학적 해석이 요구되고 있다. 본 연구의 목적은 회전굽힘피로시험을 수행하고 피로수명을 분석하는데 정규분포, 대수분포, 지수분포 및 Weibull분포를 이용하여 실험결과와 비교하고 파손확률을 찾는데 있다.

  • PDF

A Study on Rescu Technique and Safe Tow of Damaged Ship(4) - Dynamic Stability of Damaged Ship in Beam Wind and Waves - (손상된 선박의 구난 기술 및 안전 예항에 관한 연구(4) - 손상된 선박의 횡풍.횡풍중에서의 동적 안전성 -)

  • 손경호;이상갑;최경식;김용기
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10b
    • /
    • pp.27-36
    • /
    • 1998
  • This paper presents a brief outline of dynamic stability of damaged ship in rough, beam wind and waves. The one degree-of-freedom, linear roll equation is adopted with the effects of damage fluid and external forces, but without the effect of sloshing. We evaluate the dynamic stability in terms of capizing probability based on energy balance mechanics and risk analysis , the method of which was proposed by Umeda [2] to the high speed crafts. As a result, we can predict the dynamic stability quantitatively according to sea state , operating and damage conditions.

  • PDF

Analytical and experimental fatigue analysis of wind turbine tower connection bolts

  • Ajaei, Behrouz Badrkhani;Soyoz, Serdar
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • This paper presents a method of estimation of fatigue demands on connection bolts of tubular steel wind turbine towers. The presented method relies on numerical simulation of aerodynamic loads and structural behavior of bolted connections modeled using finite element method. Variability of wind parameters is represented by a set of values derived from their probability densities, which are adjusted based on field measurements. Numerically generated stress time-series show agreement with the measurements from strain gauges inside bolts, in terms of power spectra and the resulting damage. Position of each bolt has a determining effect on its fatigue damage. The proposed framework for fatigue life estimation represents the complexities in loading and local behavior of the structure. On the other hand, the developed procedure is computationally efficient since it requires a limited number of simulations for statistically representing the wind variations.

Expected extreme value of pounding force between two adjacent buildings

  • Rahimi, Sepideh;Soltani, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.183-192
    • /
    • 2017
  • Seismic pounding between adjacent buildings with inadequate separation and different dynamic characteristics can cause severe damage to the colliding buildings. Efficient estimation of the maximum pounding force is required to control the extent of damage in adjacent structures or develop an appropriate mitigation method. In this paper, an analytical approach on the basis of statistical relations is presented for approximate computation of extreme value of pounding force between two adjacent structures with equal or unequal heights subjected to stationary and non-stationary excitations. The nonlinearity of adjacent structures is considered using Bouc-Wen model of hysteresis and the pounding effect is simulated by applying the nonlinear viscoelastic model. It is shown that the proposed approach can significantly save computational costs by obviating the need for performing dynamic analysis. To assess the reliability and accuracy of the proposed approach, the results are compared with those obtained from nonlinear dynamic analysis.

UNCERTAINTY IN DAM BREACH FLOOD ROUTING RESULTS FOR DAM SAFETY RISK ASSESSMENT

  • Lee, Jong-Seok
    • Water Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.215-234
    • /
    • 2002
  • Uncertainty in dam breach flood routing results was analyzed in order to provide the basis fer the investigation of their effects on the flood damage assessments and dam safety risk assessments. The Monte Carlo simulation based on Latin Hypercube Sampling technique was used to generate random values for two uncertain input parameters (i.e., dam breach parameters and Manning's n roughness coefficients) of a dam breach flood routing analysis model. The flood routing results without considering the uncertainty in two input parameters were compared with those with considering the uncertainty. This paper showed that dam breach flood routing results heavily depend on the two uncertain input parameters. This study indicated that the flood damage assessments in the downstream areas can be critical if uncertainty in dam breach flood routing results are considered in a reasonable manner.

  • PDF

Development of Flood Vulnerability Index Estimation System (이상홍수 취약성 평가 시스템의 개발)

  • Jang, Dae-Won;Kim, Byung-Sik;Kim, Bo-Kyung;Yang, Dong-Min;Seoh, Byung-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.410-413
    • /
    • 2008
  • We constructed the regional flood risk and damage magnitude using hazard and vulnerabilities which are climatic, hydrological, socio-economic, countermeasure, disaster probability components for DB construction on the GIS system. Also we developed the Excess Flood Vulnerability index estimation System(EFVS). By the construction of the System, we can perform the scientific flood management for the flood prevention and optional extreme flood defenses according to regional characteristics. In order to evaluate the performance of system, we applied EFVS to Anseong-chen in Korea, and the system's stabilization is appropriate to flood damage analysis.

  • PDF

Seismic Performance Evaluation of Structures Retrofitted with Viscoelastic-Slit Hybrid Dampers (점탄성-슬릿 복합댐퍼로 보강된 건물의 내진성능평가)

  • Kim, Minsung;Xu, Zhaodong;Kim, Jinkoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.361-367
    • /
    • 2018
  • This study investigates the seismic performance of a hybrid seismic energy dissipation device composed of a viscoelastic damper and a steel slit damper connected in parallel. A moment-framed structure is designed without seismic load and is retrofitted with the hybrid dampers. The model structure is transformed into an equivalent simplified system to find out optimum story-wise damper distribution pattern using genetic algorithm. The effectiveness of the hybrid damper is investigated by fragility analysis of the structure with and without the dampers. The analysis results show that after seismic retrofit the probability of reaching damage states, especially the complete damage state, of the structure turn out to be significantly reduced.

Minimum Expected Life Cycle Cost Model for Optimal Seismic Design and Upgrading of Long Span PC Bridges (장대 PC교량의 최적 내진설계 및 성능개선을 위한 최소 기대 Life Cycle Cost 모델)

  • 조효남;임종권
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.305-312
    • /
    • 1999
  • This study is intended to propose a systematic and practical life cycle cost(LCC) model for the development of the reliability-based seismic safety and cost-effective performance criteria for design and upgrading of long-span PC bridges. The LCC models consist of five cost functions such as initial cost, repair/replacement cost, human losses, road user cost, and indirect losses of regional economy. The proposed model Is successfully expressed in temrs of Park-Ang damage indices and life cycle damage probability obtained from SMART-DRAIN-2DX which is an existing algorithm for nonlinear time history analysis. The proposed LCC model is successfully applied to a viaduct constructed by PSM, in Seoul. Based on the observations, the proposed systematic procedure for the formulation of LCC model may be useful for the development of the reliability-based seismic safety and cost-effective performance criteria for design and upgrading of long-span PC bridges.

  • PDF