• 제목/요약/키워드: Damage parameter

검색결과 558건 처리시간 0.02초

Correlation between parameters of pulse-type motions and damage of low-rise RC frames

  • Cao, Vui Van;Ronagh, Hamid Reza
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.365-384
    • /
    • 2014
  • The intensity of a ground motion can be measured by a number of parameters, some of which might exhibit robust correlations with the damage of structures subjected to that motion. In this study, 204 near-fault pulse-type records are selected and their seismic parameters are determined. Time history and damage analyses of a tested 3-storey reinforced concrete frame representing for low-rise reinforced concrete buildings subjected to those earthquake motions are performed after calibration and comparison with the available experimental results. The aim of this paper is to determine amongst several available seismic parameters, the ones that have strong correlations with the structural damage measured by a damage index and the maximum inter-story drift. The results show that Velocity Spectrum Intensity is the leading parameter demonstrating the best correlation, followed by Housner Intensity, Spectral Acceleration and Spectral Displacement. These seismic parameters are recommended as reliable parameters of near-fault pulse-type motions related to damage potential of low-rise reinforced concrete structures. The results also reaffirm that the conventional and widely used parameter of Peak Ground Acceleration does not exhibit a good correlation with the structural damage.

Experimental investigation on multi-parameter classification predicting degradation model for rock failure using Bayesian method

  • Wang, Chunlai;Li, Changfeng;Chen, Zeng;Liao, Zefeng;Zhao, Guangming;Shi, Feng;Yu, Weijian
    • Geomechanics and Engineering
    • /
    • 제20권2호
    • /
    • pp.113-120
    • /
    • 2020
  • Rock damage is the main cause of accidents in underground engineering. It is difficult to predict rock damage accurately by using only one parameter. In this study, a rock failure prediction model was established by using stress, energy, and damage. The prediction level was divided into three levels according to the ratio of the damage threshold stress to the peak stress. A classification predicting model was established, including the stress, energy, damage and AE impact rate using Bayesian method. Results show that the model is good practicability and effectiveness in predicting the degree of rock failure. On the basis of this, a multi-parameter classification predicting deterioration model of rock failure was established. The results provide a new idea for classifying and predicting rockburst.

Influence of geometry and safety factor on fatigue damage predictions of a cantilever beam

  • Pecnik, Matija;Nagode, Marko;Seruga, Domen
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.33-41
    • /
    • 2019
  • The influence of two parameters on fatigue damage predictions of a variably loaded cantilever beam has been examined. The first parameter is the geometry of the cantilever beam and the weld connecting it to a rear panel. Variables of the geometry examined here include the cantilever length, the weld width on the critical cross-section and the angle of the critical cross-section. The second parameter is the safety factor, as set out by the Eurocode 3 standard. An analytical approach has been used to calculate the stresses at the critical cross-section and standard rainflow counting has been used for the extraction of the load cycles from the load history. The results here suggest that a change in the width and angle of the critical cross-section has a non-linear impact on the fatigue damage. The results also show that the angle of the critical cross-section has the biggest influence on the fatigue damage and can cause the weld to withstand fatigue better. The second parameter, the safety factor, is shown to have a significant effect on the fatigue damage calculation, whereby a slight increase in the endurance safety factor can cause the calculated fatigue damage to increase considerably.

Site classes effect on seismic vulnerability evaluation of RC precast industrial buildings

  • Yesilyurt, Ali;Zulfikar, Abdullah C.;Tuzun, Cuneyt
    • Earthquakes and Structures
    • /
    • 제21권6호
    • /
    • pp.627-639
    • /
    • 2021
  • Fragility curves are being more significant as a useful tool for evaluating the relationship between the earthquake intensity measure and the effects of the engineering demand parameter on the buildings. In this paper, the effect of different site conditions on the vulnerability of the structures was examined through the fragility curves taking into account different strength capacities of the precast columns. Thus, typical existing single-story precast RC industrial buildings which were built in Turkey after the year 2000 were examined. The fragility curves for the three typical existing industrial structures were derived from an analytical approach by performing non-linear dynamic analyses considering three different soil conditions. The Park and Ang damage index was used in order to determine the damage level of the members. The spectral acceleration (Sa) was used as the ground motion parameter in the fragility curves. The results indicate that the fragility curves were derived for the structures vary depending on the site conditions. The damage probability of exceedance values increased from stiff site to soft site for any Sa value. This difference increases in long period in examined buildings. In addition, earthquake demand values were calculated by considering the buildings and site conditions, and the effect of the site class on the building damage was evaluated by considering the Mean Damage Ratio parameter (MDR). Achieving fragility curves and MDR curves as a function of spectral acceleration enables a quick and practical risk assessment in existing buildings.

표면파의 음향비선형 특성을 이용한 표면 피로열화 평가 (Evaluation of Surface Fatigue Degradation Using Acoustic Nonlinearity of Surface Wave)

  • 이재익;이태훈;장경영
    • 비파괴검사학회지
    • /
    • 제29권5호
    • /
    • pp.415-420
    • /
    • 2009
  • 이 논문은 표면파의 비선형특성을 이용하여 재료 표면의 열화손상을 평가한 사례 연구의 결과를 보고한다. 이 연구에서는 3점 굽힘 피로시험에 의해 표면에 피로열화를 가한 알루미늄 T6 시편을 대상으로 표면파의 음향 비선형 파라미터를 측정하기 위한 실험장치를 구성하였으며, 피로시험 전후에서 측정된 비선형파라미터의 크기를 비교하였다. 특히 3점 굽힘 피로시험에 의한 표면피로손상은 시편의 중앙부 표면에 집중 될 것이 예상되므로 이 주변에서의 비선형 파라미터의 변화를 세밀히 관찰하였다. 실험결과 피로손상이 거의 없는 시편의 가장자리에서는 비선형 파라미터가 피로시험 전후에서 큰 변화가 없었지만, 표면 피로열화가 집중된 중앙부에서는 뚜렷하게 증가하는 것으로 나타났다.

파라미터행렬의 변화량 추정에 근거한 트러스 구조물의 손상탐지 (Damage Detection of Truss Structure based on the Predicted Change of Parameter Matrices)

  • 강택선;이병현;은희창
    • 대한건축학회논문집:구조계
    • /
    • 제34권1호
    • /
    • pp.27-32
    • /
    • 2018
  • This work provides the analytical methods to represent the updated form of stiffness or flexibility matrices using the measurements of the first few natural frequencies and the corresponding mode shapes. This study derives the mathematical forms on the variance of stiffness or flexibility matrices to minimize the performance index in the satisfaction of the eigen-function including the residual force depending on the measured data. The proposed methods can be utilized in detecting damage and updating the parameter matrices deviated from the analytical parameter matrices. The validity of the proposed methods is investigated in a numerical experiment of truss structure and the numerical results of stiffness-based and flexibility-based methods are compared. The sensitivity to the external noise is also examined for applying to the practical work.

Sparsity-constrained Extended Kalman Filter concept for damage localization and identification in mechanical structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter;Loffeld, Otmar
    • Smart Structures and Systems
    • /
    • 제21권6호
    • /
    • pp.741-749
    • /
    • 2018
  • Structural health monitoring (SHM) systems are necessary to achieve smart predictive maintenance and repair planning as well as they lead to a safe operation of mechanical structures. In the context of vibration-based SHM the measured structural responses are employed to draw conclusions about the structural integrity. This usually leads to a mathematically illposed inverse problem which needs regularization. The restriction of the solution set of this inverse problem by using prior information about the damage properties is advisable to obtain meaningful solutions. Compared to the undamaged state typically only a few local stiffness changes occur while the other areas remain unchanged. This change can be described by a sparse damage parameter vector. Such a sparse vector can be identified by employing $L_1$-regularization techniques. This paper presents a novel framework for damage parameter identification by combining sparse solution techniques with an Extended Kalman Filter. In order to ensure sparsity of the damage parameter vector the measurement equation is expanded by an additional nonlinear $L_1$-minimizing observation. This fictive measurement equation accomplishes stability of the Extended Kalman Filter and leads to a sparse estimation. For verification, a proof-of-concept example on a quadratic aluminum plate is presented.

Data-Driven Modelling of Damage Prediction of Granite Using Acoustic Emission Parameters in Nuclear Waste Repository

  • Lee, Hang-Lo;Kim, Jin-Seop;Hong, Chang-Ho;Jeong, Ho-Young;Cho, Dong-Keun
    • 방사성폐기물학회지
    • /
    • 제19권1호
    • /
    • pp.75-85
    • /
    • 2021
  • Evaluating the quantitative damage to rocks through acoustic emission (AE) has become a research focus. Most studies mainly used one or two AE parameters to evaluate the degree of damage, but several AE parameters have been rarely used. In this study, several data-driven models were employed to reflect the combined features of AE parameters. Through uniaxial compression tests, we obtained mechanical and AE-signal data for five granite specimens. The maximum amplitude, hits, counts, rise time, absolute energy, and initiation frequency expressed as the cumulative value were selected as input parameters. The result showed that gradient boosting (GB) was the best model among the support vector regression methods. When GB was applied to the testing data, the root-mean-square error and R between the predicted and actual values were 0.96 and 0.077, respectively. A parameter analysis was performed to capture the parameter significance. The result showed that cumulative absolute energy was the main parameter for damage prediction. Thus, AE has practical applicability in predicting rock damage without conducting mechanical tests. Based on the results, this study will be useful for monitoring the near-field rock mass of nuclear waste repository.

원공을 가진 CFRP 복합재료의 피로누적손상 및 피로수명에 대한 확률적 해석 (A Probabilistic Analysis for Fatigue Cumulative Damage and Fatigue Life in CFRP Composites Containing a Circular Hole)

  • 김정규;김도식
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1915-1926
    • /
    • 1995
  • The Fatigue characteristics of 8-harness satin woven CFRP composites with a circular hole are experimentally investigated under constant amplitude tension-tension loading. It is found in this study that the fatigue damage accumulation behavior is very random and history-independent, and the fatigue cumulative damage is linearly related with the mean number of cycles to a specified damage state. From these results, it is known that the fatigue characteristics of CFRP composites satisfy the basic assumptions of Markov chain theory and the parameter of Markov chain model can be determined only by mean and variance of fatigue lives. The predicted distribution of the fatigue cumulative damage using Markov chain model shows a good agreement with the test results. For the fatigue life distribution, Markov chain model makes similar accuracy to 2-parameter Weibull distribution function.

다구찌 방법을 사용한 구조물의 손상 평가 (Damage Assessment of Structures Using Taguchi Method)

  • 권계시
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.720-728
    • /
    • 2006
  • A robust damage assessment technique is presented such that the location and severity of damage in structures can be identified using measured modal data. In order to identify the damage efficiently, the concept of design of experiment using orthogonal array is used for screening the main effects of each parameter which corresponds to possible damage location in FE model. Then, Taguchi method, which has been widely used for robust design in industry, is applied to parameter updating in analytical FE model. The numerical simulations of a truss structure show that damages in structure can be located from updated parameters.