• 제목/요약/키워드: Damage mechanism

검색결과 1,420건 처리시간 0.033초

Chemopreventive Efficacy of Moringa oleifera Pods Against 7, 12-Dimethylbenz[a]anthracene Induced Hepatic Carcinogenesis in Mice

  • Sharma, Veena;Paliwal, Ritu;Janmeda, Pracheta;Sharma, Shatruhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2563-2569
    • /
    • 2012
  • Oxidative stress is a common mechanism contributing to initiation and progression of hepatic damage in a variety of liver disorders. Hence there is a great demand for the development of agents with potent antioxidant effect. The aim of the present investigation is to evaluate the efficacy of Moringa oleifera as a hepatoprotective and an antioxidant against 7, 12-dimethylbenz[a]anthracene induced hepatocellular damage. Single oral administration of DMBA (15 mg/kg) to mice resulted in significantly (p<0.001) depleted levels of xenobiotic enzymes like, cytochrome P450 and b5. DMBA induced oxidative stress was confirmed by decreased levels of reduced glutathione (GSH) and glutathione-S-transferase (GST) in the liver tissue. The status of hepatic aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) which is indicative of hepatocellular damage were also found to be decreased in DMBA administered mice. Pretreatment with the Moringa oleifera (200 and 400 mg/kg) orally for 14 days significantly reversed the DMBA induced alterations in the liver tissue and offered almost complete protection. The results from the present study indicate that Moringa oleifera exhibits good hepatoprotective and antioxidant potential against DMBA induced hepatocellular damage in mice that might be due to decreased free radical generation.

Corrosion Assessment by Using Risk-Based Inspection Method for Petrochemical Plant - Practical Experience

  • Choi, Song-Chun;Song, Ki-Hun
    • Corrosion Science and Technology
    • /
    • 제8권3호
    • /
    • pp.119-125
    • /
    • 2009
  • Corrosion assessment has a number of uses but the use considered here is as a precursor to Risk-Based Inspection (RBI) planning. Systematic methods consisting of technical modules of RBI program were used to assess the effect of specific corrosion mechanism on the probability of failure in equipments of petrochemical plants. Especially in part of the damage and corrosion assessment, screening step involved evaluating the combinations of process conditions and construction materials for each equipment item in order to determine which damage mechanisms are potentially active. For general internal corrosion, either API 510 or API 570 was applied as the damage rate in the calculation to determine the remaining life and inspection frequency. In some cases, a measured rate of corrosion may not be available. The technical modules of RBI program employ default values for corrosion, typically derived from published data or from experience with similar processes, for use until inspection results are available. This paper describes the case study of corrosion and damage assessment by using RBI methodology in petrochemical plant. Specifically, this paper reports the methodology and the results of its application to the petrochemical units using the $KGS-RBI^{TM}$ program, developed by the Korea Gas Safety Corporation to suit Korean situation in conformity with API 581 Codes.

Daunorubicin과 4NQO의 DNA damaging activity에 대한 천연물질의 영향 (Effect of Some Natural Products on the DNA Damaging Activity of 4NQO (4-nitroquinoline n-oxide) and Daunorubicin)

  • 이완희;이행숙;권혁일;박진서;최수영;이길수
    • 한국환경성돌연변이발암원학회지
    • /
    • 제19권2호
    • /
    • pp.112-115
    • /
    • 1999
  • The action mechanism of the inhibitory effect of some natural products on the DNA strand break and DNA damage was investigated in vitro and in vivo. In the E. coli chromosomal DNA strand break experiment in vitro, three mushroom water extracts were effective on the DNA strand breaking by daunorubicin. Phellinus linteus water extract inactivated daunorubicin, a DNA strand breaking agent, but did not protect DNA from daunorubicin-induced DNA strand breaking. Agaricus blazei water extract inhibited DNA strand breaking action of daunorubicin not only by daunorubicin inactivation, but also by DNA protection from daunorubicin. An inhibitory effect of Ganoderma lucidum water extract on the DNA strand break was based on the DNA protection rather than daunorubicin inactivation. In vivo mutagen assay system (SOS-chromotest), among three mushroom water extracts Phellinus linteus water extract was the most effective one on the inhibition of DNA damage by 4-NQO. The results suggest that all three mushroom water extracts inhibit daunorubicin-induced DNA damage and in vivo DNA damaging action of 4-NQO by the reaction of mutagen inactivation or DNA protection from the mutagen.

  • PDF

Vitamin E Modulates Radiation-induced Oxidative Damage in Mice Fed a High-Lipid Diet

  • Shin, Sung-Jae
    • BMB Reports
    • /
    • 제36권2호
    • /
    • pp.190-195
    • /
    • 2003
  • The Vitamin E (VE) effect was examined on oxidative damage to DNA, lipids, and protein in mice that were fed various levels of lipid diets after total body irradiation (TBI) with X-rays at 2 Gy. No increase of 8-hydroxydeoxyguanosine (8OHdG) by TBI was observed in the +VE group; however, in the case of the -VE group, a significantly higher 8OHdG level was observed in the high-lipid group than in the low- or basal-lipid group. In the groups with TBI, the concentration of thiobarbituric reactive substances (TBARS) only significantly increased in the high-lipid (-VE) group. These changes in TBARS, due to TBI, were not detected in other groups. The contents of protein carbonyls only increased in the (-VE) group. The contents of protein carbonyls was significantly different between the (+VE) and the (-VE) groups, regardless of the lipid levels. The concentrations of GSH, vitamins C and E in the liver were lower, and the concentration of non-heme iron in the liver was higher in the high-lipid group than in the low- and basal-lipid groups. These concentrations in the high-lipid group were significantly different between the (+VE) and the (-VE) groups. These results strongly suggest that mice that are fed a high-lipid diet are susceptible to TBI-induced oxidative damage. Also, decreases in the GSH levels and an increase in the iron level are involved in the mechanism of this susceptibility.

축류 압축기 블레이드 손상시 터빈부품에 미치는 영향 (Effects of the Damaged Axial-flow Compressor Blade on the Gas Turbine Components)

  • 강명수;윤완노;김계연
    • 동력기계공학회지
    • /
    • 제11권3호
    • /
    • pp.53-58
    • /
    • 2007
  • The ruptured blade which is rotating at high speed can damage severely the all stage compressor blades and the turbine components. If the shattered blades flow downstream inside the turbine parts, then the turbine blades and vanes can be damaged. The small parts of shattered blades which are flowed into the turbine parts pass through without any damages in the leading edge of the first stage stationary blades. Then they bump against the convex side of the leading edge of the first stage moving blades and the trailing edge of the first stage stationary blades repeatedly. The debris of shattered blades may plug the cooling holes in the turbine blades and vanes. The dent damage and the coating delamination could be also occurred by the debris of shattered blades flowed downstream inside the combustion liner and the transition piece. This paper analyzes the influence on the turbine components and the damage mechanism and characteristics in case of the damaged blade of the multiple-stage axial flow compressor.

  • PDF

Acoustic emission monitoring of damage progression in CFRP retrofitted RC beams

  • Nair, Archana;Cai, C.S.;Pan, Fang;Kong, Xuan
    • Structural Monitoring and Maintenance
    • /
    • 제1권1호
    • /
    • pp.111-130
    • /
    • 2014
  • The increased use of carbon fiber reinforced polymer (CFRP) in retrofitting reinforced concrete (RC) members has led to the need to develop non-destructive techniques that can monitor and characterize the unique damage mechanisms exhibited by such structural systems. This paper presented the damage characterization results of six CFRP retrofitted RC beam specimens tested in the laboratory and monitored using acoustic emission (AE). The focus of this study was to continuously monitor the change in AE parameters and analyze them both qualitatively and quantitatively, when brittle failure modes such as debonding occur in these beams. Although deterioration of structural integrity was traceable and can be quantified by monitoring the AE data, individual failure mode characteristics could not be identified due to the complexity of the system failure modes. In all, AE was an effective non-destructive monitoring tool that can trace the failure progression in RC beams retrofitted with CFRP. It would be advantageous to isolate signals originating from the CFRP and concrete, leading to a more clear understanding of the progression of the brittle damage mechanism involved in such a structural system. For practical applications, future studies should focus on spectral analysis of AE data from broadband sensors and automated pattern recognition tools to classify and better correlate AE parameters to failure modes observed.

충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구 (Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI))

  • Lee, J.;Kong, C.;Soutis, C.
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.129-134
    • /
    • 2003
  • The importance of understanding the response of structural composites to impact and CAI cannot be overstated to develop analytical models for impact damage and CAI strength predictions. This paper presents experimental findings observed from quasi-static lateral load tests, low velocity impact tests, CAI strength and open hole compressive strength tests using 3mm thick composite plates ($[45/-45/0/90]_{3s}$ - IM7/8552). The conclusion is drawn that damage areas for both quasi-static lateral load and impact tests are similar and the curves of several drop weight impacts with varying energy levels (between 5.4 J and 18.7 J) fallow the static curve well. In addition, at a given energy the peak force is in good agreement between the static and impact cases. From the CAI strength and open hole compressive strength tests, it is identified that the failure behaviour of the specimens was very similar to that observed in laminated plates with open holes under compression loading. The residual strengths are in good agreement with the measured open hole compressive strengths, considering the impact damage site as an equivalent hole. The experimental findings suggest that simple analytical models for the prediction of impact damage area and CAI strength can be developed on the basis of the failure mechanism observed from the experimental tests.

  • PDF

Experimental investigation of novel pre-tightened teeth connection technique for composite tube

  • Li, Fei;Zhao, Qilin;Chen, Haosen;Xu, Longxing
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.161-172
    • /
    • 2017
  • A new composite tube connection method called the pre-tightened teeth connection technique is proposed to improve the composite tube connection efficiency. This paper first introduces the manufacturing process of the proposed technique. It then outlines how the mechanical properties of this technology were tested using four test groups. The factors that influence the load-bearing capacity and damage model of the connection were analyzed, and finally, the transfer load mechanism was investigated. The following conclusions can be obtained from the research results. (1) The new technique improves the compressive connection efficiency by a maximum of 79%, with the efficiency exceeding that of adhesive connections of the same thickness. (2) Changing the depth of teeth results in two types of damage: local compressive damage and shear damage. The bearing capacity can be improved by increasing the depth, length, and number of teeth as well as the pre-tightening force. (3) The capacity of the technique to transfer high loads is a result of both the relatively high interlaminar shear strength of the pultruded composite and the interlaminar shear strength increase provided by the pre-tightening force. The proposed technique shows favorable mechanical properties, and therefore, it can be extensively applied in the engineering field.

가미육미지황탕이 뇌신경세포 손상 및 뇌허혈 병태 모델에 미치는 영향 (Study on the Effect of Gamiyukmijihwang-tang on the Brain damage)

  • 김진형;김윤식;설인찬;김동희
    • 동의생리병리학회지
    • /
    • 제17권2호
    • /
    • pp.467-475
    • /
    • 2003
  • This studt was investigated to prove the effect of GMYM on the brain damage. The results were as follows; 1. GMYM showed significantly inhibitory effect on LDH release by NMDA. AMPA and Kinate. 2. GMYM showed significantly inhibitory effect on LDH release by BSO and Fe2+. 3. GMYM decreased coma duration time in a infatal dose of KCN and showed 30% of survival rate in a fatal dose. 4. GMYM showed improvement of forelimb and hindlimb test after MCA occulusion in neurological exemination. 5. GMYM decreased ischemic area and edema incited by the MCA blood flow block. These results indicate that GMYM can be used in the brain damage sujected to brain ischemia. Further study will be needed about the functional mechanism and etc.

Superoxide dismutase의 활성차이에 따른 식물세포의 paraquat에 대한 반응과 핵 DNA 손상 검정 (Nucleus-DNA Damage and Different Response of Plant Cells to Paraquat in Relation to Enzyme Activity of Superoxide Dismutase.)

  • 권순태;이명현;오세명;정도철;김길웅
    • 생명과학회지
    • /
    • 제14권4호
    • /
    • pp.614-619
    • /
    • 2004
  • This study was undertaken to investigate the different responses of cultured plant cells to paraquat treatment and nucleus-DNA damage in relation to enzyme activity of superoxide dismutase (SOD). Furthermore, this study was also carried out to understand the antioxidative mechanism of plant cells to environmental stress. We selected two different species of plant cultured cells, Ipomoea batatas as high-SOD species and Lonicera japonica as low-SOD species. The total activity and specific activity of SOD in a chlorophyllous cell of I. batatas were 3,736 unit/gㆍfresh weight and 547 unit/mgㆍprotein, respectively, and those in L. japonica were 23 unit/gㆍfresh weight and 13 unit/mgㆍprotein, respectively SOD activity in chlorophyllous I. batatas cells reached its maximum level at 10 to 15 days after subculture, whereas that in L. japonica remained at a very low SOD level during the whole period of subculture. In comparison to L. japonica, I. batatas, a high-SOD species, showed high tolerance to paraquat 10 and 50 mg/l treatment in terms of cell viability and electrolyte leakage. Based on the result of comet assay, the nucleus-DNA damage of two species by paraquat 50 mg/l treatment was not significantly different. However, I. batatas cells repaired their damaged DNA more effectively than the cells of the low-SOD species, L. japonica.