• 제목/요약/키워드: Damage index

검색결과 1,077건 처리시간 0.03초

손상지수를 이용한 단순보의 손상추정 I. 이론 및 수치 해석 (Damage Estimation of Simple Beams using Damage Index : I. Theory and Numerical Analysis)

  • 김학수;장동일
    • 한국강구조학회 논문집
    • /
    • 제8권4호통권29호
    • /
    • pp.43-50
    • /
    • 1996
  • Damage estimation of bridge structures has recently received considerable attention in the light of maintenance and retrofitting of existing structures under service loads and after natural disasters. A method for the damage assessment of bridge structures using a damage index technique is presented. The damage index is formulated for the changes of modal properties due to the change of the stiffness. In order to verify the method which is presented, numerical analysis is conducted on simple beam models. Each FE model is subjected to different damage scenarios, i.e., locations and degrees of damage. Results of numerical analysis indicate that the proposed method is capable of detecting inflicted damages using the eigenvalue of only first mode.

  • PDF

층강성 손상비를 이용한 전단형 건물의 손상위치 추정에 관한 연구 (Study on The Damage Location Detection of Shear Building Structures Using The Degradation Ratio of Story Stiffness)

  • 유석형
    • 대한건축학회논문집:구조계
    • /
    • 제34권2호
    • /
    • pp.3-10
    • /
    • 2018
  • Damage location and extent of structure could be detected by the inverse analysis on dynamic response properties such as frequencies and mode shapes. In practice the measured difference of natural frequencies represent the stiffness change reliably, however the measured mode shape is insensitive for stiffness change, but provides spatial information of damage. The damage detection index on shear building structures is formulated in this study. The damage detection index could be estimated from mode shape and srory stiffness of undamaged structure and frequency difference between undamaged and damaged structure. For the verification of the observed damage detection method, the numerical analysis of Matlab and MIDAS and shacking table test were performed. In results, the damage index of damaged story was estimated so higher than undamaged stories that indicates the damaged story apparently.

시계열 위성영상 기반 평년 식생지수 추정을 통한 산림생태계 피해 탐지 기법 (Forest Damage Detection Using Daily Normal Vegetation Index Based on Time Series LANDSAT Images)

  • 김은숙;이보라;임종환
    • 대한원격탐사학회지
    • /
    • 제35권6_2호
    • /
    • pp.1133-1148
    • /
    • 2019
  • 산림지역은 계절에 따라 생장 및 활력 특성이 변화하기 때문에 산림피해를 정확하게 탐지하기 위해서는 과거 동일한 계절적 시기의 영상정보 확보가 필요하다. 그러나 고해상도 또는 중해상도 영상은 영상촬영주가 높지 않아 동일 시기의 영상 정보들을 확보하는 것은 쉽지 않다. 따라서 본 연구에서는 산림생태계의 피해를 평가하기 위해 시계열 영상정보를 통해 피해발생 이전 과거 동일 시점의 분광정보를 추정하여 산림피해 평가의 기준정보로 활용하는 방법을 연구했다. 연구대상지는 2017년 우박과 가뭄으로 인해 대규모 산림피해가 발생한 전라남도 화순지역이며, 과거 3년간 해당 지역에서 촬영된 모든 Landsat 8 영상의 시계열 식생지수(NDVI, EVI, NDMI) 자료를 구축하고 이를 일별 연속자료로 자료보간을 실시하였다. 그리고 이를 통해 교란 발생 이전의 정상적인 일별 식생지수 추정 지도를 제작하였으며, 동일 날짜의 일별 평년 식생지수와 교란발생 이후의 식생지수의 차이값을 구하고 피해등급 기준을 적용하여 최종적인 위성자료 기반의 피해등급지도가 산출되었다. 위성기반 피해등급지도는 기존의 항공사진 기반 피해등급지도에 비해 미세한 식생활력도 변화를 효과적으로 탐지하였으며, 피해극심지역을 대상으로 비교하였을 때 SWIR 밴드를 이용한 식생지수(NDMI)가 기존의 피해등급평가 결과와 유사한 결과를 산출하여 활용도가 높은 것으로 평가되었다. 결과적으로, 일별 평년식생활력도 지도의 제작을 통해 신속하고 정확한 피해지 탐지가 가능해졌다.

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

Locating cracks in RC structures using mode shape-based indices and proposed modifications

  • Fayyadh, Moatasem M.;Razak, Hashim Abdul
    • Advances in Computational Design
    • /
    • 제7권1호
    • /
    • pp.81-98
    • /
    • 2022
  • This study presents the application of two indices for the locating of cracks in Reinforced Concrete (RC) structures, as well as the development of their modified forms to overcome limitations. The first index is based on mode shape curvature and the second index is based on the fourth derivative of the mode shape. In order to confirm the indices' effectiveness, both eigenvalues coupled with nonlinear static analyses were carried out and the eigenvectors for two different damage locations and intensities of load were obtained from the finite element model of RC beams. The values of the damage-locating indices derived using both indices were then compared. Generally, the mode shape curvature-based index suffered from insensitivity when attempting to detect the damage location; this also applied to the mode shape fourth derivative-based index at lower modes. However, at higher modes, the mode shape fourth derivative-based index gave an acceptable indication of the damage location. Both the indices showed inconsistencies and anomalies at the supports. This study proposed modification to both indices to overcome identified flaws. The results proved that modified forms exhibited better sensitivity for identifying the damage location. In addition, anomalies at the supports were eliminated.

개비자나무의 homoharringtonine 함량에 영향을 미치는 생물 및 무생물적 환경인자 (Biotic and Abiotic Factors Affecting Homoharringtonine Contents of Cephalotaxus koreana Nakai)

  • 정명석;현정오;이욱;백을선
    • 한국자원식물학회지
    • /
    • 제23권2호
    • /
    • pp.172-178
    • /
    • 2010
  • 천연집단에 서식하는 개비자나무 개체들을 이용해 무생물 및 생물적 환경인자가homoharringtonine(HHT) 함량에 미치는 영향을 조사하여 향후 항암제 가능성이 있는 HHT의 고부가가치 산업적인 생산이 기대되는 연구에 기초자료를 제공하고자 본 연구를 수행하였다. 무생물적 환경인자(토양습도, 토양pH, 서식밀도, 기온)와 HHT 함량과의 상관관계에 있어 HHT 는 토양습도(0.77)와 토양pH(-0.68)에서 높은 상관을 보였다. 고도에 따른 무생물적 환경인자 (토양습도, 토양pH)와 HHT 의 함량 관계에 관해 다중회귀 분석을 실시한 결과, 토양 습도의 회귀계수($26.48^{***}$) 만 유의하여 토양 습도가 상대적으로 HHT 함량에 높은 영향을 미치는 것으로 나타났다. 생물적 환경인자(damage index)에 따른 HHT 함량에 미치는 영향을 살펴 본 결과, HHT는 2차곡선회귀적으로 증가하다 감소하는($H=278.23+1242D-398.87D^2$) 경향을 보였고 damage index는 HHT 함량에 높은 영향을 미치는 것으로 분석되었다. 마지막으로 HHT 의 함량에 영향을 미치는 최적환경인자를 분석한 결과, damage index와 토양 습도 모두가 2차다항회귀식으로 가장 적합하였고 결정계수는 각각 0.73와 0.67로 damage index가 상대적으로 HHT 함량에 높은 영향을 미치는 것으로 나타났다. 이는 섭식자 또는 균류와 같은 스트레스로 인한 방어기작이 HHT 의 생성에 높은 영향을 미치는 것으로 판단된다.

A direct damage detection method using Multiple Damage Localization Index Based on Mode Shapes criterion

  • Homaei, F.;Shojaee, S.;Amiri, G. Ghodrati
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.183-202
    • /
    • 2014
  • A new method of multiple damage detection in beam like structures is introduced. The mode shapes of both healthy and damaged structures are used in damage detection process (DDP). Multiple Damage Localization Index Based on Mode Shapes (MDLIBMS) is presented as a criterion in detecting damaged elements. A finite element modeling of structures is used to calculate the mode shapes parameters. The main advantages of the proposed method are its simplicity, flexibility on the number of elements and so the accuracy of the damage(s) position(s), sensitivity to small damage extend, capability in prediction of required number of mode shapes and low sensitivity to noisy data. In fact, because of differential and comparative form of MDLIBMS, using noise polluted data doesn't have major effect on the results. This makes the proposed method a powerful one in damage detection according to measured mode shape data. Because of its flexibility, damage detection process in multi span bridge girders with non-prismatic sections can be done by this method. Numerical simulations used to demonstrate these advantages.

Practical relations to quantify the amount of damage of SWRCFs using pushover analysis

  • Habibi, Ali Reza;Samadi, Mohammad;Izadpanah, Mehdi
    • Advances in concrete construction
    • /
    • 제10권3호
    • /
    • pp.271-278
    • /
    • 2020
  • Quantifying the amount of damage of structures under earthquakes is an interesting issue that researchers have attended on and have presented some damage indices. Whereas a lot of damage indices have been introduced based on nonlinear dynamic analysis, computational effort, the calculus complicacy and time-consuming of this analysis are the main drawbacks to widespread use of these indices. The objective of this study is to quantify the damage of Shear Wall Reinforced Concrete Frames (SWRCFs) based on pushover analysis as a procedure that can reflect the behavior of structures from elastic to collapse. For this purpose, firstly, several SWRCFs are designed and the capacity spectrum of each one is achieved via pushover analysis. After that, the static damage indices of the designed frames are obtained. Then, nonlinear dynamic analyses are performed on these frames and the Park and Ang damage index as the basis damage criterion is achieved. Afterward, some relations are presented to predict the dynamic damage of these frames via pushover analysis. Eventually, to confirm the validity of the proposed relations, the values of Park and Ang damage index of three new SWRCFs are acquired once utilizing nonlinear dynamic analysis and again applying the introduced relations. Outcomes prove the validity of some presented damage indices.

Maximum damage prediction for regular reinforced concrete frames under consecutive earthquakes

  • Amiri, Gholamreza Ghodrati;Rajabi, Elham
    • Earthquakes and Structures
    • /
    • 제14권2호
    • /
    • pp.129-142
    • /
    • 2018
  • The current paper introduces a new approach for development of damage index to obtain the maximum damage in the reinforced concrete frames caused by as-recorded single and consecutive earthquakes. To do so, two sets of strong ground motions are selected based on maximum and approximately maximum peak ground acceleration (PGA) from "PEER" and "USGS" centers. Consecutive earthquakes in the first and second groups, not only occurred in similar directions and same stations, but also their real time gaps between successive shocks are less than 10 minutes and 10 days, respectively. In the following, a suite of six concrete moment resisting frames, including 3, 5, 7, 10, 12 and 15 stories, are designed in OpenSees software and analyzed for more than 850 times under two groups of as-recorded strong ground motion records with/without seismic sequences phenomena. The idealized multilayer artificial neural networks, with the least value of Mean Square Error (MSE) and maximum value of regression (R) between outputs and targets were then employed to generate the empirical charts and several correction equations for design utilization. To investigate the effectiveness of the proposed damage index, calibration of the new approach to existing real data (the result of Park-Ang damage index 1985), were conducted. The obtained results show good precision of the developed ANNs-based model in predicting the maximum damage of regular reinforced concrete frames.

손상지수법을 이용한 트러스 교량의 손상추정 (Damage Identification in Truss Bridges using Damage Index Method)

  • 이봉학;김정태;장동일
    • 한국강구조학회 논문집
    • /
    • 제10권2호통권35호
    • /
    • pp.279-290
    • /
    • 1998
  • 소수의 진동특성치가 실측된 삼차원 트러스 교량을 대상으로 기존의 손상추정법이 실험되었다. 첫 번째 단계로 진동모드 민감도 해석과 패턴인식기법을 사용하여 초기구조모델(baseline model)이 구성되었고, 다음 단계로 수개의 손상시나리오 수치 예를 초기구조물에 시뮬레이션하고 이를 손상지수와 패턴인식기법을 이용하여 손상위치를 예측하였다. 총 211개 요소에 11개의 부 구조계를 갖는 트러스 구조에 대하여 진동모드가 2개인 경우에 한하여 분석 검토한 결과 손상발견 알고리즘의 적합성이 입증되었다.

  • PDF