• Title/Summary/Keyword: Damage curves

Search Result 411, Processing Time 0.021 seconds

Reliability over time of wind turbines steel towers subjected to fatigue

  • Berny-Brandt, Emilio A.;Ruiz, Sonia E.
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.75-90
    • /
    • 2016
  • A probabilistic approach that combines structural demand hazard analysis with cumulative damage assessment is presented and applied to a steel tower of a wind turbine. The study presents the step by step procedure to compare the reliability over time of the structure subjected to fatigue, assuming: a) a binomial Weibull annual wind speed, and b) a traditional Weibull probability distribution function (PDF). The probabilistic analysis involves the calculation of force time simulated histories, fatigue analysis at the steel tower base, wind hazard curves and structural fragility curves. Differences in the structural reliability over time depending on the wind speed PDF assumed are found, and recommendations about selecting a real PDF are given.

A mechanical model for the seismic vulnerability assessment of old masonry buildings

  • Pagnini, Luisa Carlotta;Vicente, Romeu;Lagomarsino, Sergio;Varum, Humberto
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.25-42
    • /
    • 2011
  • This paper discusses a mechanical model for the vulnerability assessment of old masonry building aggregates that takes into account the uncertainties inherent to the building parameters, to the seismic demand and to the model error. The structural capacity is represented as an analytical function of a selected number of geometrical and mechanical parameters. Applying a suitable procedure for the uncertainty propagation, the statistical moments of the capacity curve are obtained as a function of the statistical moments of the input parameters, showing the role of each one in the overall capacity definition. The seismic demand is represented by response spectra; vulnerability analysis is carried out with respect to a certain number of random limit states. Fragility curves are derived taking into account the uncertainties of each quantity involved.

Recovery of Etching Damage of Etched PZT Thin Film by Inductively Coupled Plasma (유도결합 플라즈마에 의해 식각된 PZT 박막의 식각 Damage 개선)

  • 강명구;김경태;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.551-556
    • /
    • 2001
  • In this work, the recovery of etching damage in the etched PZT thin film with $O_2$ annealing has been studied. The PZT thin films were etched as a function of Cl$_2$/Ar and additive CF$_4$ into Cl$_2$(80%) /Ar(20%). the etch rates of PZT thin films were 1600$\AA$/min at Cl$_2$(80%)/Ar(20%) and 1970 $\AA$/min at 30% additive Cf$_4$ into Cl$_2$(80%)/Ar(20%). In order to recover the characteristics of etched PZT thin films, the etched PZT thin films were annealed in $O_2$ atmosphere at various temperatures. From the hysteresis curves, ferroelectrical properties are improved by $O_2$ annealing process. The improvement of ferroelectric behavior is consistent with the increase of the (100) and (200) PZT phase revealed by x-ray diffraction (XRD). From x-ray photoelectron spectroscopy (XPS) analysis, intensities of Pb-O, Zr-O and Ti-O peak increase and the chemical residue peak is reduced by $O_2$ annealing. From the atomic force microscopy (AFM) images. it shows that the surface morphology of re-annealed PZT thin films after etching is improved.

  • PDF

Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI) (충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구)

  • Lee, J.;Kong, C.;Soutis, C.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.129-134
    • /
    • 2003
  • The importance of understanding the response of structural composites to impact and CAI cannot be overstated to develop analytical models for impact damage and CAI strength predictions. This paper presents experimental findings observed from quasi-static lateral load tests, low velocity impact tests, CAI strength and open hole compressive strength tests using 3mm thick composite plates ($[45/-45/0/90]_{3s}$ - IM7/8552). The conclusion is drawn that damage areas for both quasi-static lateral load and impact tests are similar and the curves of several drop weight impacts with varying energy levels (between 5.4 J and 18.7 J) fallow the static curve well. In addition, at a given energy the peak force is in good agreement between the static and impact cases. From the CAI strength and open hole compressive strength tests, it is identified that the failure behaviour of the specimens was very similar to that observed in laminated plates with open holes under compression loading. The residual strengths are in good agreement with the measured open hole compressive strengths, considering the impact damage site as an equivalent hole. The experimental findings suggest that simple analytical models for the prediction of impact damage area and CAI strength can be developed on the basis of the failure mechanism observed from the experimental tests.

  • PDF

Generation of Korean artificial earthquakes for Fragility curve (손상도 곡선 작성을 위한 한국형 인공지진의 생성)

  • Nam, Youngyoon;Lee, Jongheon
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.3
    • /
    • pp.406-412
    • /
    • 2015
  • Recently, frequent earthquakes can cause serious damage to the bridge. So newly constructed bridge is considered earthquake resistant design, and for the existing old bridge evaluation of damage state is needed. In this paper, replacement of US-artificial earthquakes which are used for the construction of fragility curve for evaluating damage state to Korean artificial earthquakes to meet the Korean specifications is studied. For the generation of artificial earthquakes, the fragility curves are constructed for the PGA, for the cases of having isolated bearing and not having that.

Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law

  • Nakhli, Zahira;Ben Hatira, Fafa;Pithioux, Martine;Chabrand, Patrick;Saanouni, Khemais
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.191-201
    • /
    • 2019
  • Finite element analysis is one of the most used tools for studying femoral neck fracture. Nerveless, consensus concerning either the choice of material characteristics, damage law and /or geometric models (linear on nonlinear) remains unreached. In this work, we propose a numerical quasi-brittle damage model to describe the behavior of the proximal femur associated with two methods to evaluate the Young modulus. Eight proximal femur finite elements models were constructed from CT scan data (4 donors: 3 women; 1 man). The numerical computations showed a good agreement between the numerical curves (load - displacement) and the experimental ones. A very encouraging result is obtained when a comparison is made between the computed fracture loads and the experimental ones ($R^2=0.825$, Relative error =6.49%). All specific numerical computation provided very fair qualitative matches with the fracture patterns for the sideway fall simulation. Finally, the comparative study based on 32 simulations adopting linear and nonlinear meshing led to the conclusion that the quantitatively results are improved when a nonlinear mesh is used.

A methodology to evaluate corroded RC structures using a probabilistic damage approach

  • Coelho, Karolinne O.;Leonel, Edson D.;Florez-Lopez, Julio
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Several aspects influence corrosive processes in reinforced concrete (RC) structures such as environmental conditions, structural geometry and mechanical properties. Since these aspects present large randomnesses, probabilistic models allow a more accurate description of the corrosive phenomena. Besides, the definition of limit states in the reliability assessment requires a proper mechanical model. In this context, this study proposes a straightforward methodology for the mechanical-probabilistic modelling of RC structures subjected to reinforcements' corrosion. An improved damage approach is proposed to define the limit states for the probabilistic modelling, considering three main degradation phenomena: concrete cracking, rebar yielding and rebar corrosion caused either by chloride or carbonation mechanisms. The stochastic analysis is evaluated by the Monte Carlo simulation method due to the computational efficiency of the Lumped Damage Model for Corrosion (LDMC). The proposed mechanical-probabilistic methodology is implemented in a computational framework and applied to the analysis of a simply supported RC beam and a 2D RC frame. Curves illustrate the probability of failure evolution over a service life of 50 years. Moreover, the proposed model allows drawing the probability of failure map and then identifying the critical failure path for progressive collapse analysis. Collapse path changes caused by the corrosion phenomena are observed.

Development of a structural integrity evaluation program for elevated temperature service according to ASME code

  • Kim, Nak Hyun;Kim, Jong Bum;Kim, Sung Kyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2407-2417
    • /
    • 2021
  • A structural integrity evaluation program (STEP) was developed for the high temperature reactor design evaluation according to the ASME Boiler and Pressure Vessel Code (ASME B&PV), Section III, Rules for Construction of Nuclear Facility Components, Division 5, High Temperature Reactors, Subsection HB. The program computerized HBB-3200 (the design by analysis procedures for primary stress intensities in high temperature services) and Appendix T (HBB-T) (the evaluation procedures for strain, creep and fatigue in high temperature services). For evaluation, the material properties and isochronous curves presented in Section II, Part D and HBB-T were computerized for the candidate materials for high temperature reactors. The program computerized the evaluation procedures and the constants for the weldment. The program can generate stress/temperature time histories of various loads and superimpose them for creep damage evaluation. The program increases the efficiency of high temperature reactor design and eliminates human errors due to hand calculations. Comparisons that verified the evaluation results that used the STEP and the direct calculations that used the Excel confirmed that the STEP can perform complex evaluations in an efficient and reliable way. In particular, fatigue and creep damage assessment results are provided to validate the operating conditions with multiple types of cycles.

Seismic Safety Enhancement of Damage-Controlled Reinforced Concrete Frames (손상제어 설계된 철근 콘크리트 프레임의 내진력 향상)

  • ;;Kim, Se Yoll
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.89-97
    • /
    • 1991
  • Conventional aseismic design methods of R/C frame all but disregard the state of damage over the entire building frame. This paper presents an automated damage-controlled design method for R/C frames which aims at an uniform energy dissipation rate throughout the building frame, so that the resulting damage is uniformly distributed as much as possible over all element. The accuracy of the basic hystertic model and the damage model for R/C members is verified by reproducing the experimental load-deformation curves of one-bay one-story frames. Application of this design method to various frame structures indicate that 1) regardless of the structural properties or input earthquake characteristics, damage-controlled frames generally survive more severe earthquake excitations and suffer less damage than conventionally designed frames, and 2) member yielding strength in the lower stories of damage-controlled frames is larger than that for conventionally designed frames, while the trend is opposite in the upper stories.

  • PDF

A Damage Model for Predicting the Nonlinear Behavior of Rock (암석의 비선형 거동해석을 위한 손상모델 개발)

  • 장수호;이정인;이연규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.83-97
    • /
    • 2002
  • An experimental model which considers post-peak behaviors and pre-peak damage characteristics representing changes of elastic moduli in each damage level was developed. From experiments, some damage thresholds of rocks were determined, and regression analyses were carried out in order to represent changes of elastic moduli in each damage level as functions of confining pressure. In addition, it was intended to simulate post-peak behaviors with Hoek-Brown constants, $m_r\;and\;s_r$ for post-failure. The developed experimental model was implemented into $FLAC^{2D}$ by a FISH function. From results of parametric studies on Hoek-Brown constants for post-peak, it was revealed that uniaxial compressive strength more highly depends upon $s_r$, although it depends on both $m_r\;and\;s_r$. It was also shown that the post-peak slopes of stress-stain curves depend mainly on $m_r$. When the optimum models obtained from parametric studies were applied to numerical analysis, they predicted maximum strengths obtained from experiments and well simulated stiffness changes due to damage levels.