• Title/Summary/Keyword: Damage characteristics

Search Result 3,424, Processing Time 0.041 seconds

Seasonal Survival Characteristics of Conifer Seedlings and Their Suitable Planting Season (침엽수(針葉樹) 식재시기별(植栽時期別) 활착특성(滑着特性)과 식재적기(植栽適期)에 관한 연구(硏究))

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.58 no.1
    • /
    • pp.34-40
    • /
    • 1982
  • Main consideration of this trial is to know whether the planting work should be possible to do not only in the early spring but also in the summer or autumn, for giving the guide to get the work plan and to broaden the employing season of the skilled forest worker. Seedling of Pinus koraiensis, Larix leptolepsis, Pinus rigida, Pinus rigida${\times}$ P. taeda(wind) and Chamaecyparia obtusa as the test species had been planted in 15 days interval from the middle of March to the end of November. The seedling survival was investigated in the spring time of coming year because the winter damage could be problems. At the same time the climate data was measured daily and the shoot growth of test species were also measured in other near plantation at 15 days interval to know the influence to survival. From these results the spring and autumn planting is showing the good survival and the summer planting seems to give the difficulties. The spring planting in the southern temperate zone could be stared earlier as the end of February or beginning of March because the soil temperature are increasing up more $5^{\circ}C$ from this time. But the summer planting from the beginning of May until the end of August in better to avoid with excluding specially the good season of rainfall distribution because of the shoot growth of green confer seedling and the leave sprouting of Larix leptolepsis are so vigorously growing up from the begining of May and its wood structure is too weak to compensate the water loss. But among the test species Pinus koraiensis and Chamaecyparis obtusa have more possibility to plant in the summer season. The autumn planting seems to be very reasonable to accept newly in the trial region. This may be the reasons of still high soil temperature to grow the seedling root and of hardened school to resist from the dry winter wind. But it will be carefully that the strongly exposured site could be to avoid for the autumn planting in case of specially Pinus rigida${\times}$P. taeda and Chamaecyparis obtusa. From these discussion the guide table 1 for planting season with the test species is proposed and can be used for planing and employing in the trial zone.

  • PDF

A Study on the Potential Vegetation Recovery according to the Environment and Type of Tunnel Entrance and Exit (고속도로 터널 입·출구부 유형과 주변 환경에 따른 식생복구 잠재성에 관한 연구)

  • Lee, Sang-Cheol;Choi, Song-Hyun;Kim, Dong-Pil;Song, Jae-Tak;Oh, Hyun-Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.161-172
    • /
    • 2012
  • The purpose of this study is to classify, evaluate and grade the existing highway tunnels to increase landscape and natural statistics keeping the structural safety about tunnel gates area and induce the ones that will be constructed in the future by drawing the improvements and restoring the techniques as an environment-friendly. To examine the types of tunnel gate area, total 54 tunnels were investigated by selecting Gyeongbu Expressway, Yeongdong Expressway, and Jungang Expressway. Tunnel entrances and exit ports were classified as a Wall-closed type and Protruding type, which is based on tunnel gate type. Vegetation Landscape types were classified as Multilayer-Same as the surrounding landscape_(MS), Multilayer-Difference of surrounding landscape_(MD), Single layer-Same as the surrounding landscape_(SS), Single layer-Difference of surrounding landscape_(SD), and a Desolate type which based on vegetation layers and environment-friendly. Potential vegetation recovery was identified based on the structural stability and revegetation potential of the tunnel. The factors include the structural stability of the slope height and slope gradient were selected. Revegetation potential was identified as a growth potential. This factor was used in the step to classify vegetation recovery potential of a tunnel. The result, which investigated the types of tunnel entrances and exit parts has found that the most typical in 33 places was a Wall closed type with 61.1% of the total ones. The case of vegetation landscape types was created but different from the ones surrounding it with 85.2% of the total ones. It is judged that the currently constructed vegetation of tunnel entrance and exit parts had put convenience on the safety and management before landscape consideration. In addition, tunnel entrance and exit parts with excellent potential for vegetation recovery were all Protruding type. In addition, it is judged that slope stability can easily obtain growth. Therefore, entrance and exist of the highway tunnels, which will be constructed in the future, should reflect location and the result of the natural and ecological survey in design by performing it in advance and their types, which minimize the damage area range, should be applied to the local characteristics suitably. In addition, the ecologically healthy tunnel construction should be done by introducing active vegetation recovery techniques based on its safety.

Management of the Nakdong-Jeongmaek based on the Characteristics of Cold Air - Focused on Busan, Ulsan, Pohang - (찬공기 특성을 고려한 낙동정맥 관리방안 연구 - 부산, 울산, 포항 인근을 대상으로 -)

  • Eum, Jeong-Hee;Son, Jeong-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.5
    • /
    • pp.103-115
    • /
    • 2016
  • This study aims to analyze the properties of cold air production and its flow of Nakdong-Jeongmaek(mountain ranges), and to suggest management strategies for Nakdong-Jeongmaek in order to enhance the green air conditioning functions of Jeongmaek. For this purpose, three study sites including Gudeoksan Mountain and the vicinity in Busan, Goheonsan Mountain and the vicinity in Ulsan, and Unjusan Mountain and the vicinity in Pohang were selected. The results found that cold air flow and its height of the three study sites were analyzed based on topographic properties and land use. Management strategies for preserving and enhancing their temperature reduction functions were suggested. The cold air produced in the vicinity of Gudeoksan was not fully developed and spread because of the high-density development at the border of Jeongmaek. Since high pressures of development are expected at the border, high conservation policies are required. In the vicinity of Goheonsan, where the agricultural complex and industrial park are located, cold air flows well throughout the entire study site thanks to fully developed cold air in the wide, flat valley. Hence, plans to maintain the current cold air flow are required, and conservation plans to mitigate future developments are also needed in the flat valley. The cold air in Unjusan and the vicinity with its complex and narrow mountain valleys gradually develops into valley bottoms. In order to take advantage of the terrain, the valley near the cold air production areas are preserved. In particular, special plans are required to prevent damage to the cold air layer near Youngcheonho Lake, where the highest height of cold air was recorded due to the closed and lower terrain feature. This study could support the establishment of systematic management plans of Nakdong-Jeongmaek to preserve and enhance its green air conditioning functions.

A Case Study for the Determination of Time Distribution of Frequency Based Rainfall (확률강우의 적정시간분포 결정에 관한 연구)

  • Lee, Jeong Ki;Kim, Hung Soo;Kang, In Joo
    • Journal of Wetlands Research
    • /
    • v.6 no.3
    • /
    • pp.71-81
    • /
    • 2004
  • In recent, the heavy rainfall is frequently occurred and the damage tends to be increased. So, more careful hydrologic analysis is required for the designs of the hydraulic or disaster prevention structures. The time distribution of a rainfall is one of the important factors for the estimation of peak flow in hydrologic and hydraulic designs. This study is to suggest a methodology for the estimation of a rainfall time distribution which can reflect the meteorologic and topographical characteristics of Daejeon area. We collect the 34 years' rainfall data recorded in the range of 1969 to 2002 for Daejeon area and we performed the rainfall analysis with the data in between May and October of each year. According to the Huff method, the collected data corresponds to the first quartile which the rainfall is concentrated in the primary stage but the suggested method shows the different rainfall distribution with the Huff method in time. The reason is that the Huff method determines the quartile in each storm event while the suggested one determines it by estimating the dimensionless distribution of rainfall in duration after the accumulation of rainfall in time. The rainfall distributions estimated by two methodologies were applied to the Gabcheon basin in Daejeon area for the estimation of flood flow. Here we use the SCS method for the effective rainfall and unit hydrograph for the flood discharge. As the results, the peak flow for 24-hour of 100-year frequency was estimated as a $3421.20m^3/sec$ by the Huff method and $3493.38m^3/sec$ by the suggested one. We can see the difference of $72.18m^3/sec$ in between two methods and thus we may carefully determine the rainfall time distribution and compute the effective rainfall for the estimation of the peak flow.

  • PDF

A Study on the Location of Zen Buddhist Temples During the Late Silla Dynasty in Korea - from Feng-shui(風水) Perspective - (신라말 구산선문(九山禪門) 사찰의 입지 연구 - 풍수적 측면을 중심으로 -)

  • Cho, Sung-Ho;Sung, Dong-Hwan
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.3
    • /
    • pp.53-81
    • /
    • 2000
  • The purpose of this study is to examine the chracteristics of the location of Zen Buddhist temples which are the Nine-Mountain Sects of Zen(九山禪門) from feng-shui perspective. A large number of temples have been built for about 1600 years since Buddhism had influenced on Korea. They have been built nationwide in different times by different sects of Buddhism. The pattern of location of Buddhist temples is different according to background of the times (political, economic, cultural aspect) and of tenet(difference in sects of Buddhism) when the temples were built. But the general location of Korean Buddhist temples is in accordance with feng-shui theory. Feng-shui is a traditional geographic thought in China and Korea. It is necessary to understand feng-shui in order to understand Korean landscape and cultural geography. It had given a tremendous impact on Korean landscape through choosing site of cities, settlements, houses, mounments, temples, pagodas, and so on. Before feng-shui was prevailing in Korea, Buddhist temples were mostly built on sacred place which was connected with folk beliefs. In the case of the late Silla Dynasty when Zen Buddhism was prevailing, feng-shui became popular and many. temples were built in accordance with feng-shui. The typical examples are found in the site of Nine-Mountain Sects of Zen temples. The interpretation of geomantic site of Nine-Mountain Sects of Zen temples will show us how feng-shui was applied to and reflected in the Korean peninsula. In Zen Buddhism, feng-shui was applied to the choice of the temple site. Also feng-shui theory was usually used to choose the site of stupa(Budo) where the remains of the founder of sect. In this study, I will interpret the geomantic characteristics of Nine-Mountain Sects of Zen temples. The geomantic interpretations of the temples are as follow. 1. The temples are located at the foot of a hill with surrounding mountains and a watercourse in front. Feng-shui texts often describe it as an ideal site. This geomantic situation is well equipped with natural drainage; protection from cold wind from the north or evil spirits; a good view with open space to the front; protection from unnecessary weather damage; and security and protection from strangers and invaders. 2. The sitting and facing direction of the temples correspond to the oncoming dragon's direction. 3. Many feng-shui texts discuss the types of Sa(surrounding mountains) in detail and morphologically describe them with certain animate and inanimate auspicious objects. In case of Nine-Mountain Sects of Zen temples, the geomantic landscape of these can be compared to auspicious objects. This is morphological marker for the description of configulation features of these temples. 4. Most auspicious places are not perfect, but the shortcomings can be overcome by many means. We can observe modification of landscape for the purpose of fulfilling the geomantic harmony of the temple.

  • PDF

Material Characteristics and Deterioration Assessment of the Stone Buddhas and Shrine in Unjusa Temple, Hwasun, Korea (화순 운주사 석조불감의 재질특성과 풍화훼손도 평가)

  • Park, Sung-Mi;Lee, Myeong-Seong;Choi, Seok-Won;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.23-36
    • /
    • 2008
  • The stone Buddhas and Shrine of Unjusa temple (Korea Treasure No. 797) in Hwasun formed in Koryo Dynasty are unique style which the Buddha faces each other the back parts of south and north within the stone Shrine. The stone Buddhas and Shrine are highly evaluated in historical, artistic and academic respects. But, the stone properties have been exposed in the open system various aspects of degradations weathered for a long time without specific protective facilities. The rock materials of the stone Buddhas and Shrine are about 47 blocks, and total press load is about 56.6 metric ton. The host rocks composed mainly of white grey hyaline lithic tuff and rhyolitic tuff breccia. In addition, biotite granite used as part during the restoration works. The chemical index of alteration for host tuffaceous rocks and the replacement granites range from 52.1 to 59.4 and 50.0 to 51.0, respectively. Weathering types for the stone Buddhas and Shrine were largely divided with physical, chemical and biological weathering to make a synthetic deterioration map according to aspects of damage, and estimate share as compared with surface area. Whole deterioration degrees are represented that physical weathering appeared exfoliation. Chemical weathering is black coloration and biological weathering of grey lichen, which show each lighly deterioration degrees. According to deterioration degree by direction of stone Buddhas and Shrine, physical weathering mostly appeared by 39.1% on the sorthern part, and chemical weathering is 61.2% high share on the western part. Biological weathering showed 38.3% the largest distribution on the southern part. Therefore, it is necessary to try hardening for the parts with serious cracks or exfoliations, remove secondary contaminants and organisms through regular cleaning. Also necessary to make a plan to remove moisture of the ground which causes weathering, and estimate that need established and scientific processing through clinical demonstration of conservation plan that chooses suitable treatment.

  • PDF

Agroclimatic Zone and Characters of the Area Subject to Climatic Disaster in Korea (농업 기후 지대 구분과 기상 재해 특성)

  • 최돈향;윤성호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.13-33
    • /
    • 1989
  • Agroclimate should be analyzed and evaluated accurately to make better use of available chimatic resources for the establishment of optimum cropping systems. Introducing of appropriate cultivars and their cultivation techniques into classified agroclimatic zone could contribute to the stability and costs of crop production. To classify the agroclimatic zones, such climatic factors as temperature, precipitation, sunshine, humidity and wind were considered as major influencing factors on the crop growth and yield. For the classification of rice agroclimatic zones, precipitation and drought index during transplanting time, the first occurrence of effective growth temperature (above 15$^{\circ}C$) and its duration, the probability of low temperature occurrence, variation in temperature and sunshine hours, and climatic productivity index were used in the analysis. The agroclimatic zones for rice crop were classified into 19 zones as follows; (1) Taebaek Alpine Zone, (2) Taebaek Semi-Alpine Zone, (3) Sobaek Mountainous Zone, (4) Noryeong Sobaek Mountainous Zone, (5) Yeongnam Inland Mountainous Zone, (6) Northern Central Inland Zone, (7) Central Inland Zone, (8) Western Soebaek Inland Zone, (9) Noryeong Eastern and Western Inland Zone, (10) Honam Inland Zone, (ll) Yeongnam Basin Zone, (12) Yeongnam Inland Zone, (13) Western Central Plain Zone, (14) Southern Charyeong Plain Zone, (15) South Western Coastal Zone, (16) Southern Coastal Zone, (17) Northern Eastern Coastal Zone, (18) Central Eastern Coastal Zone, and (19) South Eastern Coastal Zone. The classification of agroclimatic zones for cropping systems was based on the rice agroclimatic zones considering zonal climatic factors for both summer and winter crops and traditional cropping systems. The agroclimatic zones were identified for cropping systems as follows: (I) Alpine Zone, (II) Mountainous Zone, (III) Central Northern Inland Zone, (IV) Central Northern West Coastal Zone, (V) Cental Southern West Coastal Zone, (VI) Gyeongbuk Inland Zone, (VII) Southern Inland Zone, (VIII) Southern Coastal Zone, and (IX) Eastern Coastal Zone. The agroclimatic zonal characteristics of climatic disasters under rice cultivation were identified: as frequent drought zones of (11) Yeongnam Basin Zone, (17) North Eastern Coastal Zone with the frequency of low temperature occurrence below 13$^{\circ}C$ at root setting stage above 9.1%, and (2) Taebaek Semi-Alpine Zone with cold injury during reproductive stages, as the thphoon and intensive precipitation zones of (10) Hanam Inland Zone, (15) Southern West Coastal Zone, (16) Southern Coastal Zone with more than 4 times of damage in a year and with typhoon path and heavy precipitation intensity concerned. Especially the three east coastal zones, (17), (18), and (19), were subjected to wind and flood damages 2 to 3 times a year as well as subjected to drought and cold temperature injury.

  • PDF

Hydraulic Stability Examination of Rainwater Reservoir Pipe Network System on Various Inflow Conditions (유입량 변화에 따른 도심지 내 우수저류조 관망시스템의 안정성 검토)

  • Yoo, Hyung Ju;Kim, Dong Hyun;Maeng, Seung Jin;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, it is necessary to install the facilities that can cope with the initial stormwater. Most researches have been conducted on the design of facilities applying the Low Impact Development (LID) and the reduction effect on rainfall runoff to examine with 1D or 2D numerical models. However, the studies on the examination about flow characteristics and stability of pipe network systems were relatively insufficient in the literature. In this study, the stability of the pipe network system in rainwater storage tank was examined by using 3D numerical model, FLOW-3D. The changes of velocity and dynamic pressure were examined according to the number of rainwater storage tank and compared with the design criteria to derive the optimal design plan for a rainwater storage tank. As a results of numerical simulation with the design values in the previous study, it was confirmed that the velocity became increased as the number of rainwater storage tank increased. And magnitude of the velocity in pipes was formed within the design criteria. However, the velocity in the additional rainwater storage pipe was about 3.44 m/s exceeding the allowable range of the design criteria, when three or more additional rainwater storage tanks were installed. In the case of turbulence intensity and bottom shear stress, the bottom shear stress was larger than the critical shear stress as the additional rainwater storage was increased. So, the deposition of sediment was unlikely to occur, but it should be considered that the floc was formed by the reduction of the turbulence intensity. In addition, the dynamic pressure was also satisfied with the design criteria when the results were compared with the allowable internal pressure of the pipes generally used in the design of rainwater storage tank. Based on these results, it was suitable to install up to two additional rainwater storage tanks because the drainage becomes well when increasing of the number of storage tank and the velocity in the pipe becomes faster to be vulnerable to damage the pipe. However, this study has a assumption about the specifications of the rainwater storage tanks and the inflow of stormwater and has a limitation such that deriving the suitable rainwater storage tank design by simply adding the storage tank. Therefore, the various storage tank types and stormwater inflow scenarios will be asked to derive more efficient design plans in the future.

Soil Chemical Characteristics and Comparison with Infested Status of Nematode(Meloidogyne spp.) in Plastic House Continuously Cultivated Oriental Melon in Songju (성주 지역 시설참외 연작지의 토양특성 및 토양선충 변화)

  • Jun, Han-Sik;Park, Woo-chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.2
    • /
    • pp.127-132
    • /
    • 2001
  • This study was conducted for ten years to evaluate the effective soil management for preventing the infection of root-knot nematode in the field of continuous cultivation with oriental melon under plastic house in Songju area of kyongbuk province. The content of available phosphate, total nitrogen, organic matter, CEC, and exchangeable base in the soil increased with the increase of continuous cultivation year. Especially salt content in the soil increased form 1.2 to 4.55 mS/cm and the yield of oriental melon dramatically decreased with the continuous cultivation year. The number of root-knot nematode was 91 per $300\;cm^3$ of soil in the field of continuous cultivation for 3 years and showed slight damage on the oriental melon, but it was 518 in the field of $4{\sim}6$ years continuous cultivation and showed that 50% of plants died in August, and the yield of late season was less than 50% compared to normal plant. For the seasonal changes in infection rate of root-knot nematode on oriental melon plant, 15% of the normal plant was infected by nematode in February and increased gradually by $10{\sim}20%$ per month, 60% of plants was infected in July. The density of root-knot nematode nymph was 167 in February and increased to 1,625 in August. The infection rate of nematode was 35%, and the number of nematode was about 54 in nursery soil originated from paddy soil, upland soil, and river sand. There were no relationship between the number of nematode and available phosphate or exchangeable base in the soil of plastichouse where oriental melon plants were grown.

  • PDF

Geological Heritage Grade Distribution Mapping Using GIS (공간정보를 이용한 지질유산 등급분포도 작성 연구)

  • Lee, Soo-Jae;Lee, Sunmin;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.867-878
    • /
    • 2017
  • Recent interest in geological heritage has been increased in that it can be used as a basic data onto predicting the global environmental change of its containing information about past global environment. In addition, due to the characteristics of the geological heritage, it is easy to damage and difficult to recover without continuous preservation and management. However, there are more damages occurring because of the sporadic spatial distribution and ambiguous management authority of geological heritage. Therefore, an integrated management system is needed by determining the spatial distribution of geological heritage preferentially. In this study, the detailed criteria for assessment of value from the preliminary studies were applied and the geological heritage grade distribution map was generated by using geospatial data in Seoul metropolitan area. For this purpose, the list of geological heritage sites in the Seoul metropolitan area, which is the study area, were complied through a literature review. The geospatial database was designed and constructed by applying the detailed criteria for assessment of value from the preliminary studies. After the construction of the spatial database, a grade map of the geological heritage was created. As a result of the geological heritage grade map in the Seoul metropolitan area, there were more than 35% of the geological heritage in northern Gyeonggi provinces such as Yeoncheon city (18.8%), Pocheon city (10.6%) and Paju city (6.3%). It is followed by 18.1% in Incheon and 8.1% in Ansan, which is approximately 26.2% in western Gyeonggi Province. The geological age of the geological heritage was the highest at in the fourth stage of the Cenozoic era of 16.9%. Through the results of this study, the geological heritage data of the Seoul metropolitan area were extracted from existing literature data and converted into spatial information. It enables comparing the geological features with the spatial distribution of geological heritage. In addition, a management system has been established based on spatial information of constantly building geological heritage data. This provides the integrated management system of the geological heritage to manage authority so that it can be used as a basis for the development of the geological park. Based on the results of this study, it is considered to be possible to systematically construct and utilize the geological heritage across the country.