• Title/Summary/Keyword: Damage Tolerance Design

Search Result 46, Processing Time 0.028 seconds

Hydraulic Runner Design Method for Lifetime

  • Sabourin, Michel;Thibault, Denis;Bouffard, David-Alexandre;Levesque, Martin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.301-308
    • /
    • 2010
  • Quest for reliability of hydraulic runners is a concern for all mature electricity producers. The fatigue damage caused by dynamics loads is frequently the root cause of runner failure. This paper presents the damage tolerance approach based on fracture mechanics as the method chosen by Alstom and Hydro-Qu$\acute{e}$bec to predict effects of damage on runner lifetime and consequently to be use as a design method. This is sustained by a research on fracture mechanics properties of runner materials and by recommendations on the strategy to define a safety margin for design. The acquired knowledge permits to identify potential improvement of the runner lifetime without significant cost increase, like being more specific on some chemical composition or heat treatment.

Fatigue Analysis for Newly Installed Blade Antenna of Aging Aircraft (노후 항공기 신규 블레이드 타입 안테나 장착에 따른 피로 해석 연구)

  • Lee, Sang Hoon;Lee, Sook;Choi, Sang Min
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.65-71
    • /
    • 2019
  • In this study, as a part of the aging aircraft performance improvement project for which no design information is provided, a new type of blade antenna is installed on the main part of the aging aircraft, and the method of proving the fatigue life of the main part of the aircraft is reviewed and summarized. There are various methods to prove fatigue life according to the manufacturer and aircraft design conditions. The fatigue life prediction and damage tolerance range of the relevant site were obtained through related regulations and industry examples. From these results, the fatigue life of newly installed antennas around the main parts of the aging aircraft was evaluated and the maintenance period and criteria were set according to the damage tolerance.

A Study on the Damage Design of Military Aircraft Structure Material by Armor Piercing Bullet Hit (철갑탄 피격에 의한 군용 항공기 구조재료의 손상설계에 관한 연구)

  • Hur, Jang-Wook;Hyun, Young-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1051-1057
    • /
    • 2010
  • Database for the damage reference by armor piercing bullet test was established for both tube and plate specimens having a range of thickness. As the inclined angles of hit are increasing, it has been found that penetration damage diameter tends to increases accordingly in both specimen of the tube and plate, and such penetration damage diameter on the rear side becomes bigger than those on the front side. The tube specimen showed that the damage becomes bigger when central areas rather than the peripheral were hit. Through the plate test, it also has been found that the penetration ballistic limit for Al alloy is about 25.4mm and that of stainless steel about 12.7mm. From the fatigue analysis results using the database for damage reference, it has been identified whether the safety requirements of military aircraft could be met.

Creep Design of Type 316LN Stainless Steel by K-R Damage Theory (K-R 손상이론에 의한 316LN 스테인리스강의 크리프 설계)

  • Kim, U-Gon;Kim, Dae-Hwan;Ryu, U-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.296-303
    • /
    • 2001
  • Kachanov-Rabotnov(K-R) creep damage theory was reviewed, and applied to design a creep curve for type 316LN stainless steel. Seven coefficients used in the theory, i.e., A, B, k, m, λ, r, and q were determined, and their physical meanings were analyzed clearly. In order to quantify a damage parameter ($\omega$), cavity amount was measured in the crept specimen taken from interrupted creep test with time variation, and then the amount was reflected into K-R damage equations. Coefficient λ, which is regarded as a creep tolerance feature of a material, increased with creep strain. Mater curve with λ=2.8 was well coincided with an experimental one to the full lifetime. The relationship between damage parameter and life fraction was matched with the theory at exponent ${\gamma}$=24 value. It is concluded that K-R damage equation was reliable as the modelling equation for type 316LN stainless steel. Coefficient data obtained from type 316LN stainless steel can be utilized for life prediction of operating material.

Simulation-Based Fault Analysis for Resilient System-On-Chip Design

  • Han, Chang Yeop;Jeong, Yeong Seob;Lee, Seung Eun
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.175-179
    • /
    • 2021
  • Enhancing the reliability of the system is important for recent system-on-chip (SoC) designs. This importance has led to studies on fault diagnosis and tolerance. Fault-injection (FI) techniques are widely used to measure the fault-tolerance capabilities of resilient systems. FI techniques suffer from limitations in relation to environmental conditions and system features. Moreover, a hardware-based FI can cause permanent damage to the target system, because the actual circuit cannot be restored. Accordingly, we propose a simulation-based FI framework based on the Verilog Procedural Interface for measuring the failure rates of SoCs caused by soft errors. We execute five benchmark programs using an ARM Cortex M0 processor and inject soft errors using the proposed framework. The experiment has a 95% confidence level with a ±2.53% error, and confirms the reliability and feasibility of using proposed framework for fault analysis in SoCs.

항공기에 장착된 POD 연결부의 구조 신뢰성 평가

  • 윤혁중;신규인;박상윤;박재학;김도형;주진원;주영식;전승문
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.101-106
    • /
    • 2003
  • 항공기 외부 장착물인 POD는 전자전 방해장치(ECM, electronic counter measures)로서 전자방해 장비 및 부분 부품인 전ㆍ후방 러그(lug)와 외부 케이스로 이루어져 있다. POD는 항공기 외부 동체 하단부 및 파일런(pylon)에 장착되어 작동하므로 항공기의 운용중 이륙부터 착륙간의 기동에 의한 피로하중을 주로 받게 되므로 POD 부품들에 대한 구조 건전성 확보하기 위해서는 MIL-STD-1530의 요구에 따라 내구성(durability) 및 손상허용설계(damage tolerance design) 의 평가가 요구되고 있다.(중략)

  • PDF

Design and Analysis on Composite Structure for Aircraft Certification (항공기 인증을 위한 복합재 구조물 설계/해석)

  • Kim, Sung-Joon;Choi, Ik-Hyeon;Ahn, Seok-Min;Yeom, Chan-Hong
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.42-48
    • /
    • 2009
  • There are a number of factors affecting the continued airworthiness of composite structure. Unlike metal structure, damages made in manufacturing processes or maintenance repair procedures need to be considered. The different levels of degradation and damage, which may occur, must be considered for structural substantiation of static strength, stiffness, flutter, and damage tolerance. This can start with an evaluation of environmental effects for the particular composite material. Matrix-dominated composite properties, such as compressive strength, are most sensitive to moisture absorption and temperatures. Static strength substantiation includes the smaller damages that will not be detected in production or maintenance inspection while damage tolerance addresses larger damages that need to be repaired once discovered. In this paper, we intend to list the airworthiness regulations and advisory circular that are deemed closely related to the certification of composite airplanes.

  • PDF

A Study on Fatigue Life Distribution of SM45C under Constant Rotating Bending Stress (SM45C의 회전굽힘 응력하의 피로수명분포에 관한 연구)

  • Pyo, Pyo,Dong-Keun;Park, Jong-U
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.85-93
    • /
    • 1991
  • 피로 파괴연구의 급격한 발전에 따라 최근의 기계나 구조물들은 많은 분야에서 손상허용설계원리에 근거하여 설계되고 있다. 이러한 상황 하에서 피로파손의 정확한 특성을 밝히는 것은 신뢰성을 고려한 기계나 구조물의 설계에 있어 가장 중요한 요인이 된다. 피로파손은 많은 랜덤요소를 내포하고 있으므로 실험결과 분석 및 수명예측을 분석하기 위해서는 통계학적 해석이 요구되고 있다. 본 연구의 목적은 회전굽힘피로시험을 수행하고 피로수명을 분석하는데 정규분포, 대수분포, 지수분포 및 Weibull분포를 이용하여 실험결과와 비교하고 파손확률을 찾는데 있다.

  • PDF

Accelerating technique of postbuckling analysis for stiffened composites shell structures (보강된 복합재료 쉘구조물에 대한 좌굴 후 거동해석의 가속화 기법연구)

  • Oh Se Hee;Kim Chun Gon;Kim Kwang Soo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.47-50
    • /
    • 2004
  • It is very important that the analysis of postbuckling characteristics for stiffened composite structure. Damage tolerance design concept has been imported in many aerospace structures design to increase the structural efficiency and material failure is an inevitable process in postbuckling behavior. These design concepts are very efficient but consume very much calculation time in analytical process. The proper analysis method for reducing calculation time was researched and the total analysis time was reduced. A selection of proper element, the large load increments in linear response region, and the termination of analysis for unnecessary region were imported in the analysis and about $70\%$ time reduction was achieved with keeping a high accuracy of results.

  • PDF

High Cycle Fatigue Life Evaluation of Damaged Composite Rotor Blades (손상된 복합재 로터 블레이드의 고주기 피로수명 평가)

  • Kee, Young-Jung;Kim, Seung-Ho;Han, Jeong-Ho;Jung, Jae-Kwon;Heo, Jang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1275-1282
    • /
    • 2012
  • Helicopter rotor systems are dynamically loaded structures with many composite components such as the main and the tail rotor blades. The fatigue properties of composite materials are extremely important to design durable and reliable helicopter rotor blades. The safe-life methodology has generally been used in the helicopter industry to substantiate dynamically loaded composite components. However, it cannot be used to evaluate the strength reducing effects of flaws and defects that may occur during manufacturing and operational usage. The damage tolerance methodology provides a proper means to overcome this shortcoming; however, it is difficult to economically apply it to every composite component. The flaw tolerant methodology is an equivalent option to the damage tolerance methodology for civil and military rotorcraft. In this study, the flaw tolerant safe-life evaluation is described and illustrated by means of successful application to substantiate the retirement time of composite rotor blades.