
J. lnf. Commun. Converg. Eng. 19(3): 175-179, Sep. 2021 Regular paper
Simulation-Based Fault Analysis for Resilient System-On-
Chip Design

Chang Yeop Han , Yeong Seob Jeong , and Seung Eun Lee* , Member, KIICE

Department of Electronic Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea

Abstract

Enhancing the reliability of the system is important for recent system-on-chip (SoC) designs. This importance has led to studies
on fault diagnosis and tolerance. Fault-injection (FI) techniques are widely used to measure the fault-tolerance capabilities of
resilient systems. FI techniques suffer from limitations in relation to environmental conditions and system features. Moreover, a
hardware-based FI can cause permanent damage to the target system, because the actual circuit cannot be restored. Accordingly,
we propose a simulation-based FI framework based on the Verilog Procedural Interface for measuring the failure rates of SoCs
caused by soft errors. We execute five benchmark programs using an ARM Cortex M0 processor and inject soft errors using the
proposed framework. The experiment has a 95% confidence level with a ±2.53% error, and confirms the reliability and
feasibility of using proposed framework for fault analysis in SoCs.

Index Terms: Resilient design, Fault analysis, Fault injection, Soft error, System-on-chip

I. INTRODUCTION

The failure rate in system-on-chip (SoC) designs has
increased along with developments in process technologies
and demands for low-power designs. Efforts to reduce the
failure rate are important for various applications such as
electrical devices in automobiles and U-health care, in addi-
tion to fields requiring high safety and reliability, such as
those for nuclear power plants, airplanes, and satellites.
Therefore, designers should consider several fault-tolerant
techniques to maintain the reliability of the system. When a
fault occurs in the target system, it can cause an error. By
considering faults of the system in the design stage, the
design can be made fault-tolerant. Research activities on
fault tolerance have been actively conducted over the past
half century, aiming to provide the ability to complete accu-
rate functions at all times, even when a system suffers dam-
age. Recently, research has been conducted on diagnosing

faults through machine learning [1]. In general, a fault-toler-
ant technique identifies system faults and corrects them
using additional resources. Aiming to provide stability in
system currents, research has also been conducted on con-
trolling currents based on calculations of the inductor current
[2]. Fault diagnosis resolves the verification concerns of a
resilient system. Fault diagnosis confirms the status of the
system and its fault-tolerance capability. The miniaturization
of integrated circuits is likely to increase the frequency of
errors. For this reason, studies have been conducted to ana-
lyze system vulnerabilities through microarchitecture-level
fault injection (FI) [3, 4]. FI techniques have been widely
used in fault diagnosis. FI techniques can be classified based
on the device injecting the fault into a target system. A hard-
ware-based FI enables the target system to experience faults
at a physical level [5, 6]. The test time of a hardware-based
FI is fast. However, hardware-based FI approaches cause
permanent damage to the target system, because the actual

175

Received 23 July 2021, Revised 23 July 2021, Accepted 09 August 2021
*Corresponding Author Seung Eun Lee (E-mail: seung.lee@seoultech.ac.kr, Tel: +82-2-970-9021)
Department of Electronic Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea.

https://doi.org/10.6109/jicce.2021.19.3.175 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

https://orcid.org/0000-0002-0839-4345
https://orcid.org/0000-0002-8719-8800
https://orcid.org/0000-0003-3817-4383

J. lnf. Commun. Converg. Eng. 19(3): 175-179, Sep. 2021
circuit cannot be restored [7]. A software-based FI intro-
duces a software fault by modifying the execution code in
the system [8, 9]. A software-based FI is practical, as the
required hardware and software are actually used. However,
it is limited by the types of faults injected by the software.
An emulation-based FI injects faults into a design imple-
mented on a field-programmable gate array (FPGA) [10, 11].
The diagnosis can be processed in real-time, but the target
design must be optimized in the FPGA before the experi-
ment. A simulation-based FI observes a failure using a com-
puter simulation tool [12, 13]. The simulation-based FI can
change the data in any location and at any time, without
damaging the real system and with no additional hardware
costs. Both hardware and software faults cause changes of
signals. As a result, both faults are considered by a simula-
tion-based FI, which randomly changes the signals of the
system through simulations.

In this paper, we propose a simulation-based FI framework
named the “SoC Fault Analyzer” (SoCFA), based on the Ver-
ilog Procedural Interface (VPI), to measure the failure rates
of SoCs caused by soft errors. The SoCFA functions consist
of a series of processes for modeling and injecting soft errors
into a target system, and then examining the system fail-
ure(s). The function of the VPI is subdivided for better effi-
ciency in modification and addition. A case study using an
ARM Cortex M0 processor demonstrates the feasibility of
using our SoCFA for fault analyses of SoCs.

The rest of this paper is organized as follows. Section 2
provides a detailed description of the SoCFA framework and
the overall simulation procedure. Section 3 presents the
experimental setup, and the results from the fault analysis
using the ARM Cortex M0 processor. Finally, we conclude
our paper in Section 4.

II. SYSTEM MODEL

A. Overview

The SoCFA framework includes the following: (a) the
SoCFA, which includes an error injection platform, failure-
rate extraction unit, and testbench with a duplicated design;
(b) a testbench, which instantiates the duplicated design and
calls the VPI function; and (c) a gate-level netlist, i.e., the
target under diagnosis (see Fig. 1). The fault diagnosis pro-
cess using the SoCFA is described as follows. (1) First, the
socfa_fault_model (U, U_TEST) in the testbench calls the
SoCFA VPI function, where U is the original design under
diagnosis, and U_TEST is the duplicated design that suffers
the soft errors. (2) A list of input and internal node informa-
tion is extracted from the design for the soft-error genera-
tion. (3) Based on this list, the error generator generates
random error data and assigns the time information regard-
ing when the error will be injected. The random error could
be changed into specific errors such as cosmic-ray particle,
thermal, supply-voltage fluctuation, or 1/f noise-induced
errors. (4) The generated errors are injected according to the
error time information. The VPI process continues observing
the data inside the design during the simulation, and then
injects the errors at the designated internal node and corre-
sponding simulation time. (5) The failure-rate extraction unit
compares the outputs of the two modules and measures the
failure rates. Duplicated modules are used to check the fail-
ures of the output ports so that changes in the output are
observed when the same data enter the identical design mod-
ules. The error injection and failure-rate extraction are per-
formed in each clock cycle during the simulation.

Fig. 1. Overview of the System-on-Chip Fault Analyzer (SoCFA) framework: (a) block diagram of the SoCFA. (b) Verilog Procedural Interface (VPI) function call
in the testbench, and (c) gate-level netlist under diagnosis.
https://doi.org/10.6109/jicce.2021.19.3.175 176

Simulation-Based Fault Analysis for Resilient System-On-Chip Design
B. Verilog Procedural Interface

VPI is a C-programming interface for the Verilog hard-
ware description language (Verilog HDL). It supports inter-
connection between high-level languages such as C/C++ and
Verilog HDL. The VPI was developed to overcome the
drawbacks in the Verilog Programming Language Interface
(PLI), e.g., too many functions and vulnerabilities in com-
patibility with other simulators. The VPI has fewer functions
than the PLI and is compatible with many simulators such as
the Cadence NC Verilog or Synopsys VCS. The VPI can be
used in the design verification phase.

The SoCFA functions for modeling errors and measuring
the failure rates are accessible only by calling the VPI func-
tion in an existing gate-level testbench. Therefore, the SoC
designer can easily adopt our SoCFA for fault diagnosis.
Moreover, the designer can use an existing gate-level verifi-
cation environment that includes CAD tools, a testbench,
and a netlist, i.e., as already set up for functional and timing
validation of the design.

C. System-On-Chip Fault Analyzer(SoCFA) Function

The SoCFA framework provides a convenient way to call
the VPI function (socfa_fault_model) in the testbench,
thereby providing a simulation interface for modeling the
errors and measuring the failure rates of a design. Different
VPI functions are required to perform the fault diagnosis, as
shown in Fig. 1-(a). The SoCFA functions are intended to
conveniently modify the existing features and improve new
features. The SoCFA functions are divided according to spe-
cific roles: (1) extracting design information (e.g., list of
inputs, outputs, and internal nodes in the design; simulation
time; and size of the design); (2) determining the FI timing
according to the error type; (3) injecting the generated errors
into the target system; and (4) comparing the system outputs
during the simulation. Table 1 summarizes the role of each
function in the SoCFA. Fig. 2 shows the system flow of our
SoCFA, and the functions used in each sequence. After the
socfa_fault_model function is called in the testbench, the
socfa_show_ports function extracts the name and value
information from the I/O ports at the first simulation stage.

Similarly, the socfa_show_nodes function extracts the name
and value information from the internal nodes. The socfa_-
time_generate function generates the timing information
when the errors are injected into the target system according
to the error model. The error data are generated by the soc-
fa_error_generate function according to the type of soft
errors. Subsequently, the generated errors are injected into
the system using the socfa_inject_error function. Finally, the
output data between two modules are checked by the socfa_-
check_failure function. All SoCFA functions for modeling
the errors and measuring the failure rates are accessible only
by calling the VPI function call in the testbench.

III. EXPERIMENT

A. Experimental Environment

In our study, the experiments were performed on a server
with an Intel Xeon CPU (six cores) running at 2.67 GHz
with 24.7 GB of DDR3 memory. The Cadence NC Verilog
tool was used for the simulation with the VPI. We adopted
the TSMC 65-nm library for the synthesis of the ARM Cor-
tex M0 processor. Six benchmark programs were executed:
Dhrystone, Ackermann, Fibonacci, Sieve, Helloworld, and

Table 1. Description of the System-on-Chip Fault Analyzer (SoCFA) functions

Function Description

$socfa_fault_model (U, U_TEST) Main Verilog Procedural Interface (VPI) function for error injection and fault analysis

socfa_show_ports List out the name and value for I/Os

socfa_show_nodes List out the name and value for nodes

socfa_time_generate Generate timing to inject errors

socfa_error_generate Generate errors according to error model

socfa_inject_error Inject the generated errors into the design

socfa_check_failure Compare the outputs in U and U_TEST modules and report failure information

Fig. 2. System flow of the SoCFA for fault diagnosis.
177 http://jicce.org

J. lnf. Commun. Converg. Eng. 19(3): 175-179, Sep. 2021
Bubble Sort. Table 2 shows the simulation information of the
benchmarks, such as the simulation time for each program,
CPU time for fault diagnosis, and memory usage.

We injected the soft error into the ARM Cortex M0 pro-
cessor and checked the failure rate using the SoCFA frame-
work. All experiments were performed with the netlist of the
Cortex M0 processor for the gate-level simulation. The
entire simulation process was identical to that described in
Section 2.1, and the experiment was repeated for 1500 trials
for the statistical analysis. The analysis with 1500 trials had
a 95% confidence level with a ±2.53% error.

B. Experimental Results

Fig. 3 shows the failure rates of the ARM Cortex M0 pro-
cessor under the different workloads, assuming a 10−8 soft
error rate. In Fibonacci, the failure rate is 5.47 × 10−9, the
highest among the benchmarks. In Bubble Sort, Sieve, and
Ackermann, the failure rates are approximately 5 × 10−9.
Dhrystone exhibits a 4.21 × 10−9 failure rate. In Helloworld,
the failure rate is 2.36 × 10−9, i.e., roughly 57% lower than
that in the Fibonacci. Through the statistical analysis, we can
confirm that the failure rates differ depending on the applica-
tion program, but they are almost uniform, regardless of the
number of experimental trials. As a result, our SoCFA

framework can reliably measure a target system with consis-
tent results and can provide a feasible means for fault diag-
noses of SoCs, along with different application programs.

C. Benefits

A study for improving the reliability of a system is
required, because semiconductors are vulnerable to external
environment and manufacturing process drawbacks follow-
ing developments in process technologies. Thus, a robust
system design and fault-tolerant technique are strongly
required. The SoCFA framework is a simulation-based FI
technique designed to measure the failure rate of a target
system. We verified that our framework can accurately mea-
sure the failure rate of a system. In addition, the SoCFA is
easily accessible because all routines are performed by only
calling the VPI function in the testbench. In addition, the
SoCFA can measure the statistical failure rate without con-
cerns regarding damage and additional costs.

IV. CONCLUSIONS

In this paper, we proposed a simulation-based FI frame-
work named SoCFA based on the VPI for fault diagnoses of
SoCs. The SoCFA provides an easy way of diagnosing the
failure rates of SoCs using an existing gate-level simulation
environment. A case study conducted using ARM Cortex M0
demonstrated the feasibility of our SoCFA for fault diagno-
sis. We believe that the fault diagnosis of SoCs is essential
for resilient and low-power circuit designs, and that our
SoCFA could provide the means for designing a resilient
system.

ACKNOWLEDGEMENTS

This study was supported by the Research Program funded
by the SeoulTech(Seoul National University of Science and
Technology).

REFERENCES

[1] X. Yang, J. S. Lee, and H. K. Jung, “Fault Diagnosis Management
Model using Machine Learning,” Journal of Information and
Communication Convergence Engineering (JICCE), vol. 17, no. 2,
pp. 128-134, 2019. DOI: 10.6109/jicce.2019.17.2.128

[2] J. Y. Kim, S. H. Park, and Y. S. Suh, “Maximum Current Estimation
Method for the Backup of Current Sensor Faults,” Journal of
Information and Communication Convergence Engineering, vol. 18,
no. 3, pp. 201-206, 2020. DOI: 10.6109/jicce.2020.18.3.201.

[3] A. Chatzidimitriou, G. Papadimitriou, C. Gavanas, G. Katsoridas,
and D. Gizopoulos, “Multi-Bit Upsets Vulnerability Analysis of Modern

Table 2. Information of benchmarks running on an ARM Cortex M0
processor

Benchmark Simulation time CPU time Memory Usage

Ackermann 436.1 ms 70.7 s 158.3 MB

Helloworld 436 ms 73.9 s 158.3 MB

Dhrystone 1,394.8 ms 237.3 s 157.3 MB

Fibonacci 2,187.6 ms 356.8 s 158.3 MB

Bubble 5,124.2 ms 891.9 s 158.4 MB

Sieve 12,174.2 ms 2041.1 s 158.4 MB

Fig. 3. Failure rates of the Cortex M0 processor with different workloads
under a 10−8 soft error.
https://doi.org/10.6109/jicce.2021.19.3.175 178

Simulation-Based Fault Analysis for Resilient System-On-Chip Design
Microprocessors,” 2019 IEEE International Symposium on Workload
Characterization (IISWC), pp. 119-130, 2019. DOI: 10.1109/IISWC
47752.2019.9042036.

[4] M. Kaliorakis, D. Gizopoulos, R. Canal, and A. Gonzalez, “MeRLiN:
Exploiting dynamic instruction behavior for fast and accurate
microarchitecture level reliability assessment,” 44th Annual International
Symposium on Computer Architecture (ISCA), pp. 241-254, 2017.
DOI: 10.1145/3079856.3080225.

[5] V. Pouget, D. Lewis, and P. Fouillat, “Time-Resolved Scanning of
Integrated Circuits with a Pulsed Laser: Application to Transient
Fault Injection in an ADC,” IEEE Transactions on Instrumentation
and Measurement, vol. 53, no. 4, pp. 1227-1231, 2004. DOI: 10.
1109/TIM.2004.831488.

[6] R. J. Martínez, P. J. Gil, G. Martín, C. Pérez, and J. J. Serrano,
“Experimental Validation of High-Speed Fault-Tolerant Systems
Using Physical Fault Injection,” Dependable Computing for Critical
Applications 7 (DCCA 7), pp. 249-265, 1999. DOI: 10.1109/DCFTS.
1999.814299.

[7] H. Ziade, R. Ayoubi, and R. Velazco, “A Survey on Fault Injection
Techniques,” The International Arab Journal of Information Technology,
vol. 1, no. 2, pp. 171-186, July 2004.

[8] N. Wulf, G. Cieslewski, A. Gordon-Ross, and A. D. George, “SCIPS:
An Emulation Methodology for Fault Injection in Processor Caches,”

IEEE Aerospace Conference, pp. 1-9, 2011. DOI: 10.1109/AERO.
2011.5747450.

[9] R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira, “On Fault
Representativeness of Software Fault Injection,” IEEE Transactions
on Software Engineering, vol. 39, no. 1, pp. 80-96, 2013. DOI:
10.1109/TSE.2011.124

[10] M. Portela-García, C. López-Ongil, M. G. Valderas, and L. Entrena,
“Fault Injection in Modern Microprocessors Using On-Chip
Debugging Infrastructures,” IEEE Transactions on Dependable and
Secure Computing, vol. 8, no. 2, pp. 308-314, 2011. DOI: 10.1109/
TDSC.2010.50

[11] L. Entrena, M. García-Valderas, R. Fernández-Cardenal, A. Lindoso,
M. Portela García, and C. López-Ongil, “Soft Error Sensitivity
Evaluation of Microprocessors by Multilevel Emulation-Based Fault
Injection,” IEEE Transactions on Computers, vol. 61, no. 3, pp. 313-
322, 2012. DOI: 10.1109/TC.2010.262.

[12] J. Xu and P. Xu, “The Research of Memory Fault Simulation and
Fault Injection Method for BIT Software Test,” 2012 Second In-
strumentation, Measurement, Computer, Communication and Control
(IMCCC), pp. 718-722, 2012. DOI: 10.1109/IMCCC.2012.174.

[13] D. Lee and J. Na, “A Novel Simulation Fault Injection Method for
Dependability Analysis,” IEEE Design & Test of Computers, vol. 26,
no. 6, pp. 50-61, 2009. DOI: 10.1109/MDT.2009.135.

Chang Yeop Han
received a B.S. degree from the Department of Electronic Engineering at the Seoul National University of Science and

Technology, Seoul, Korea in 2020, where he is pursuing the M.S. degree. His current research interests include computer

architecture and system-on-chip design.

Yeong Seob Jeong
received the B.S. and M.S. degrees in Electronic Engineering from the Seoul National University of Science and

Technology, Seoul, Korea, in 2012 and 2014, respectively. His research interests include computer architecture, system-

on-chip, and fault-tolerant system designs.

Seung Eun Lee
received a Ph.D. degree in electrical and computer engineering from the University of California, Irvine (UC Irvine) in 2008,

and B.S. and M.S. degrees in electrical engineering from the Korea Advanced Institute of Science and Technology

(KAIST), Daejeon in 1998 and 2000, respectively. After graduating, he worked with Intel Labs., Hillsboro, OR, as a

Platform Architect. In 2010, he joined the faculty of the Seoul National University of Science and Technology, Seoul. His

current research interests include computer architecture, multi-processor system-on-chip, low-power and resilient VLSI,

and hardware acceleration for emerging applications.
179 http://jicce.org

