• Title/Summary/Keyword: Damage Scale

Search Result 1,374, Processing Time 0.042 seconds

A Study on Practical Analyzing and Improving Disaster Management Organization of Korean Government (재난관리조직의 실태분석과 발전방안)

  • 권오한;남상화;이춘하
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.127-138
    • /
    • 2001
  • I. introduction. A government goal at the present is established to make a welfare nation and to keep people's safe living, but it is criticised that when a large-scale disaster happens, the authority concerned could not deal with it, causing many people injured and material damage. Moreover, in these days, cities have many risk factors. extremely large and intelligent building, industrial facilities and underground equipment have many risk themselves along with scientific progress. The cope with disaster effectively, government must have efficient organization, skillful personnel, tool, facilities and so on. To reduce the damages, what's the most effective government organization\ulcorner II. Government organization for managing disaster In a few decades, a large-sized accidents broke out in korea, for example, collapse of Sampoong department store, break of Sungso bridge, explosion of Daegu city gas, gas explosion accident at Ahyon-dong etc. but government has not any adequate disaster response organization. Especially, after collapse of Sampoong department store broke out, Disaster Management Act is enacted to solve the past problem. According to Disaster management Act, disaster is limited in manmaid disaster. Therefore, in this thesis, disaster management is inspected theoretically, organization of disaster management for pattern of disaster, and role, duty of government organization, emergency relief organization system and actual conditions are analyzed. there are some problems. there are trials and errors. the government has changed the disaster management organization by the disaster management law. the organization consists of central and local government. but both of government do not work together harmoniously. in thesis, I would like to introduce the advanced nations disaster management organization, and study our central, local government organization. III. Conclusion Change and development of the government disaster management organization is the goal of this thesis. we have to increase public service in response and manage disaster. protecting civilian's life from the disaster is very important responsibility of government. there would be better way of government disaster management organization.

  • PDF

The use of SMA wire dampers to enhance the seismic performance of two historical Islamic minarets

  • El-Attar, Adel;Saleh, Ahmed;El-Habbal, Islam;Zaghw, Abdel Hamid;Osman, Ashraf
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.221-232
    • /
    • 2008
  • This paper represents the final results of a research program sponsored by the European Commission through project WIND-CHIME ($\underline{W}$ide Range Non-$\underline{IN}$trusive $\underline{D}$evices toward $\underline{C}$onservation of $\underline{HI}$storical Monuments in the $\underline{ME}$diterranean Area), in which the possibility of using advanced seismic protection technologies to preserve historical monuments in the Mediterranean area is investigated. In the current research, the dynamic characteristics of two outstanding Mamluk-Style minarets, which similar minarets were reported to experience extensive damage during Dahshur 1992 earthquake, are investigated. The first minaret is the Qusun minaret (1337 A.D, 736 Hijri Date (H.D)) located in El-Suyuti cemetery on the southern side of the Salah El-Din citadel. The minaret is currently separated from the surrounding building and is directly resting on the ground (no vaults underneath). The total height of the minaret is 40.28 meters with a base rectangular shaft of about 5.42 ${\times}$ 5.20 m. The second minaret is the southern minaret of Al-Sultaniya (1340 A.D, 739 H.D). It is located about 30.0 meters from Qusun minaret, and it is now standing alone but it seems that it used to be attached to a huge unidentified structure. The style of the minaret and its size attribute it to the first half of the fourteenth century. The minaret total height is 36.69 meters and has a 4.48 ${\times}$ 4.48 m rectangular base. Field investigations were conducted to obtain: (a) geometrical description of the minarets, (b) material properties of the minarets' stones, and (c) soil conditions at the minarets' location. Ambient vibration tests were performed to determine the modal parameters of the minarets such as natural frequencies and mode shapes. A $1/16^{th}$ scale model of Qusun minaret was constructed at Cairo University Concrete Research Laboratory and tested under free vibration with and without SMA wire dampers. The contribution of SMA wire dampers to the structural damping coefficient was evaluated under different vertical loads and vibration amplitudes. Experimental results were used along with the field investigation data to develop a realistic 3-D finite element model that can be used for seismic risk evaluation of the minarets. Examining the updated finite element models under different seismic excitations indicated the vulnerability of such structures to earthquakes with medium to high a/v ratio. The use of SMA wire dampers was found feasible for reducing the seismic risk for this type of structures.

The Continuity of Operation (COOP) Application to a Local Government for Disaster Risk Reduction

  • Jang, Young-Jin;Wang, Won-joon;Jung, Jae-Wook;Seo, Yong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.157-166
    • /
    • 2019
  • Globally, various disasters such as typhoons, floods, earthquakes, fires, explosions have caused work to be halted. If there is a large-scale disaster at public institutions in charge of major national affairs and their works are interrupted, not only will there be property damage, but there will also lead to a decline in national credibility and direct and indirect impacts on the people. Therefore, it is necessary to ensure continuity of operation by minimizing the interruption period of critical operations due to disasters. Overseas advanced countries such as the United States and Japan developed guidelines for Continuity of Operation (COOP) to prevent unexpected work disruptions caused by disasters. Recognizing the necessity of COOP in South Korea, a relevant law has been newly established in 「the Framework Act on the Management of Disasters and Safety」 to enable public institutions to establish the COOP in response to this situation. In this study, the definition, the necessity and overseas cases of COOP were investigated and described. Using the templates developed by these results, operational impact analysis, risk assessment, operational continuity strategies and operational continuity procedures were applied to "A" City Hall in Gyeonggi-do province and those results were described. The objective of this study is to substantially contribute to the introduction of COOP to local governments through their pilot application and implications of COOP.

Study of Blast Ground Vibration & Noise Measurements In-situ and Effect Analysis for Numerical Analysis, Rational Blasting Design at an Eel Farm (양만장의 발파 진동소음 현장측정과 수치해석을 통한 영향검토 및 합리적인 발파설계 연구)

  • Lee Song;Kim Sung-Ku;Rhee Yong-Ho
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.179-188
    • /
    • 2006
  • The vibration or/and noise generated by blast operations might cause not only structural damage to properties but mentally also to humans and animals. For that reason, maximum permitted vibration and noise levels are set by sensitivities of structures and they are used for the management of blast vibration. It is known that the fish lived in water are more sensitive to vibration than land animals, and thus the adverse impact of the blasting on fish farms should be very concerned. This study investigated the vibration and noise levels at a large eel farm located some 840 meters of the blasting site through the large real-scale experiments of blastings, prior to conducting the actual blasting. As a result, it was found that the noise met the requirement to be within maximum permitted level, while the ground vibration exceeded the permitted vibration. Accordingly, the impact of the excess vibration was investigated by an existing empirical method and verified by a new three dimensional numerical analysis. In this study, such an inspection process was briefly described, and a method was suggested for the examination of possible adverse effects from blasting on vibration-sensitive structures like the eel farm. The study also introduced a design method that controls the blast effects - ground vibration and noise.

Correlation between Optic Nerve Sheath Diameter Measured by Computed Tomography and Elevated Intracranial Pressure in Patients with Traumatic Brain Injury

  • Lim, Tae Kyoo;Yu, Byug Chul;Ma, Dae Sung;Lee, Gil Jae;Lee, Min A;Hyun, Sung Yeol;Jeon, Yang Bin;Choi, Kang Kook
    • Journal of Trauma and Injury
    • /
    • v.30 no.4
    • /
    • pp.140-144
    • /
    • 2017
  • Purpose: The optic nerve sheath diameter (ONSD) measured by ultrasonography is among the indicators of intracranial pressure (ICP) elevation. However, whether ONSD measurement is useful for initial treatment remains controversial. Thus, this study aimed to investigate the relationship between ONSD measured by computed tomography (CT) and ICP in patients with traumatic brain injury (TBI). Methods: A total of 246 patients with severe trauma from January 1, 2015 until December 31, 2015 were included in the study. A total of 179 patients with brain damage with potential for ICP elevation were included in the TBI group. The remaining 67 patients comprised the non-TBI group. A comparison was made between the two groups. Receiver operating characteristic (ROC) curve analysis was performed to determine the accuracy of ONSD when used as a screening test for the TBI group including those with TBI with midline shift (with elevated ICP). Results: The mean injury severity score (ISS) and glasgow coma scale (GCS) of all patients were $24.2{\pm}6.1$ and $5.4{\pm}0.8$, respectively. The mean ONSD of the TBI group ($5.5{\pm}1.0mm$) was higher than that of the non-TBI group ($4.7{\pm}0.6mm$). Some significant differences in age ($55.3{\pm}18.1$ vs. $49.0{\pm}14.8$, p<0.001), GCS ($11.7{\pm}4.1$ versus $13.3{\pm}3.0$, p<0.001), and ONSD ($5.5{\pm}1.0$ vs. $4.7{\pm}0.6$, p<0.001) were observed between the TBI and the non-TBI group. An ROC analysis was used to assess the correlation between TBI and ONSD. Results showed an area under the ROC curve (AUC) value of 0.752. The same analysis was used in the TBI with midline shift group, which showed an AUC of 0.912. Conclusions: An ONSD of >5.5 mm, measured on CT, is a good indicator of ICP elevation. However, since an ONSD is not sensitive enough to detect an increased ICP, it should only be used as one of the parameters in detecting ICP along with other screening tests.

Next Generation Convergence Security Framework for Advanced Persistent Threat (지능형 지속 위협에 대한 차세대 융합 보안 프레임워크)

  • Lee, Moongoo;Bae, Chunsock
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.92-99
    • /
    • 2013
  • As a recent cyber attack has a characteristic that is intellectual, advanced, and complicated attack against precise purpose and specified object, it becomes extremely hard to recognize or respond when accidents happen. Since a scale of damage is very large, a corresponding system about this situation is urgent in national aspect. Existing data center or integration security framework of computer lab is evaluated to be a behind system when it corresponds to cyber attack. Therefore, this study suggests a better sophisticated next generation convergence security framework in order to prevent from attacks based on advanced persistent threat. Suggested next generation convergence security framework is designed to have preemptive responses possibly against APT attack consisting of five hierarchical steps in domain security layer, domain connection layer, action visibility layer, action control layer and convergence correspondence layer. In domain connection layer suggests security instruction and direction in domain of administration, physical and technical security. Domain security layer have consistency of status information among security domain. A visibility layer of Intellectual attack action consists of data gathering, comparison, decision, lifespan cycle. Action visibility layer is a layer to control visibility action. Lastly, convergence correspond layer suggests a corresponding system of before and after APT attack. An introduction of suggested next generation convergence security framework will execute a better improved security control about continuous, intellectual security threat.

A Study on the Pile Behaviour Adjacent to Tunnel Using Photo Imaging Process and Numerical Analysis (Photo Imaging Process 기법 및 수치해석을 이용한 터널주변 파일기초거동에 대한 연구)

  • Lee Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.87-102
    • /
    • 2005
  • In the congested urban areas, tunnelling close to existing structures or services often occurs due to the lack of surface space so that tunnelling-induced ground movements may cause a serious damage to the adjacent structures. This study focused on the two dimensional laboratory model pile-soil-tunnelling interaction tests using a close range photogrammetric technique. Testing equipments and procedures were Introduced, particularly features of aluminium rods regarded as the frictional granular material. The experimental result showed that the photo imaging process by the VMS and EngVis programs proved to be a useful tool in measuring the pile tip movements during the tunnelling. Consequently, the normalised pile tip movement data for the influence zones can be generated by the laboratory model tests using the Photogrammetric technique. This study presents influence zones associated with the normalized pile tip settlements due to tunnelling in the cohesionless material. The influence zones were Identified by both a laboratory model test and a numerical analysis. The normalized pile tip movements from the model test were in good agreement with the numerical analysis result. The influence zones proposed in this study could be used to decide the reasonable location of tunnel construction in the planning stage. However, the scale of model pile and model tunnel sizes must be carefully adjusted as real ones for practical application considering the ground conditions at a given site.

Fatigue Evaluation of Precast Concrete Deck Connection using Ultra-High Performance, Fiber Reinforced Concrete (초고성능 섬유보강 콘크리트를 적용한 프리캐스트 바닥판 접합부의 피로성능 평가)

  • Lee, Jun-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.275-285
    • /
    • 2015
  • This experimental study presents the fatigue evaluation of a precast deck connected using Ultra-High Performance, Fiber Reinforced Concrete (UHPFRC). Four types of two identical large-scale specimens were fabricated with simplified splice rebar details which had a short splice length of ten times rebar diameter. The flexural behavior of each type of specimens until failure was investigated and fatigue behavior of the same type of specimens was then evaluated using two-million cyclic loading. In the flexural tests, tensile rebars exhibited the deformation exceeding yielding strain but failure mode related to the splice details was not observed in spite of such a short splice length. In the fatigue tests, damage was not appreciably accumulated by the cyclic loading except initial flexural cracks and the stress variations in tensile rebars was less than the allowable stress range. These experimental results demonstrate that all types of specimens exhibited acceptable fatigue performance and indicate that enhanced mechanical properties of ultra-high performance material permits to use a simplified splice details along with short joint width.

Factors Influencing Disaster Preparedness of Students Studying Emergency Rescue (일 지역 응급구조(학)과 학생들의 재난대비에 영향을 미치는 요인)

  • Choi, Seong-Woo;Ju, Ho-Hyeon
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.651-658
    • /
    • 2016
  • As three sides of Korea are surrounded by the sea and it is geographically located at an intersect point for continental and maritime climate, the climate crisis and global warming factors that lead to large-scale natural disasters such as typhoons, floods, and tsunami as well as disasters and damage to humans are increasing due to rapid urbanization and industrialization. Therefore, this study measured the ability of people to cope with disaster in students studying emergency rescue who will play a central role in safety and casualty control in disaster areas in order to figure out the factors that will influence their overall ability. As a result, the following things were discovered: Those who had the experience of listening to information on how to cope in a disaster scored significantly higher in disaster coping scores than those who did not. In comparison with subjects who responded that they were not satisfied with their emergency rescue training at school, those who responded that they were satisfied with their education scored significantly higher in their disaster coping scores. In comparison with subjects who responded negatively to the questions on experience in emergency rescue training as an extracurricular program, those who responded affirmatively to the questions were evaluated as significantly higher in their disaster coping scores. This study suggests that specific strategies can be taken and are needed to improve the ability to cope with disasters in students who are studying emergency rescue.

Priority Analysis for Infrastructure Recovery from Volcanic Disaster (사회기반시설의 화산재해 복구 우선순위 산정)

  • Park, Hyung Keun;Kang, Kyo Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.989-998
    • /
    • 2014
  • Recently volcanic eruptions and activities occurring in many parts of world have become a common global concern to many countries. The severity of these Volcanic disasters, such as of Mt. Eyjafjallajokull in Iceland and Mt. Merapi in Indonesia, have caused damages and causalities reaching astronomical levels. The infrastructure is categorized into 18sections that appropriately reflecting the survey data collected from various government agents, current inhabitant and engineers to accumulate a database on the priorities and preferences of restoring and reconstructing many kinds of infrastructure and facilities. The survey data was collect by using the "Likert 5 Scale Method" which emphasized the importance and priority of reconstruction and restoration for the specific facilities and infrastructures. The data was corrugated, organized and used in plotting and planning a strategic recovery agenda. The survey results were analyzed and verified to ensure the validity and reliability of the data by using chi-square test. This paper presents that recovery period and recovery cost to the total damage of infrastructure and facilities were used to make a recovery network with implemented construction management method. The research is expected that a more efficient and prompt recovery protocol and recovery plan can be executed and can be use as a reference and database.