• 제목/요약/키워드: Damage Resistance

검색결과 1,254건 처리시간 0.044초

Identification of Novel Clubroot Resistance Loci in Brassic rapa

  • Pang, Wenxing;Chen, Jingjing;Yu, Sha;Shen, Xiangqun;Zhang, Chunyu;Piao, Zhongyun
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 춘계학술대회 및 임시총회
    • /
    • pp.42-42
    • /
    • 2015
  • Plasmodiophora brassicae, the causal agent of clubroot disease, does the most serious damage to the Brassica crops. The limited control approaches make that the identification of clubroot resistance (CR) is more important for developing CR cultivars of the Brassica crops. So far, 8 CR loci were mapped. However, the variation of P. brassicae leads to the rapid erosion of its resistance. To identify novel CR genes, we employed three mapping population, derived from crosses between Chinese cabbage and turnip inbred lines ($59-1{\times}ECD04$ and $BJN3-1{\times}Siloga$) or between Chinese cabbage inbred lines ($BJN3-1{\times}85-I-II$), to perform QTL analysis. Totally, 8 CR loci were indentified and showed race-specific resistance. Physical mapping of these 8 loci suggested that 4 were located previously mapped position, indicating they might be the same allele or different alleles of the same genes. Other 4 loci were found to be novel. Further, CR near isogenic line carrying each CR locus was developed based on the marker assisted selection. Verification of these CR loci was underway. Identification of these novel CR genes would facilitate to breed broad-spectrum and durable CR cultivars of B. rapa by pyramiding strategies.

  • PDF

열간단조 금형강의 열충격과 열피로 특성연구 (Analysis of Thermal Shock and Thermal Fatigue in Tool Steels for Hot Forging)

  • 김정운;문영훈;류재화;박형호
    • 소성∙가공
    • /
    • 제11권1호
    • /
    • pp.61-68
    • /
    • 2002
  • The thermal shock and thermal fatigue test has been carried out to analyze the thermal characteristics of tool steels for hot forging and the effects of mechanical properties on this study have been investigated. The resistance to thermal shock is first of all a matter of good toughness and ductility. Therefore, a proper hot-work tool steel should be characterized by high fracture strength and high temperature toughness. Based on these results, some critical temperature($T_{fracture}$) at which fracture occur can be measured to characterize the thermal resistance of the materials. During thermal fatigue tests, the thermal fatigue cracks occur because of the repetitive heating and cooling of the die surface and the thermal fatigue damage was evaluated by analyzing different number of cycles to failure. The results showed that the resistance to thermal shock and thermal fatigue were found to be favoured by high hot tensile strength and high hot hardness, and thermal resistance of SKD61 was superior to that of ESC, SKT4 and this was caused by higher mechanical properties of SKD61.

Low temperature pulsed ion shower doping for poly-Si TFT on plastic

  • Kim, Jong-Man;Hong, Wan-Shick;Kim, Do-Young;Jung, Ji-Sim;Kwon, Jang-Yeon;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.95-97
    • /
    • 2004
  • We studied a low temperature ion doping process for poly-Si Thin Film Transistor (TFT) on plastic substrates. The ion doping process was performed using an ion shower system, and subsequently, excimer laser annealing (ELA) was done for the activation. We have studied the crystallinity of Si surface at each step using UV-reflectance spectroscopy and the sheet resistance using 4-point probe. We found that the temperature has increased during ion shower doping for a-Si film and the activation has not been fulfilled stably because of the thermal damage against the plastic substrate. By trying newly a pulsed ion shower doping, the ion was efficiently incorporated into the a-Si film on plastic substrate. The sheet resistance decreased with the increase of the pulsed doping time, which was corresponded to the incorporated dose. Also we confirmed a relationship between the crystallinity and the sheet resistance. A sheet resistance of 300 ${\Omega}$/sq for the Si film of 50nm thickness was obtained with a good reproducibility. The ion shower technique is a promising doping technique for ultra low temperature poly-Si TFTs on plastic substrates as well as those on glass substrates.

  • PDF

경계조건에 따른 고강도 H형강 부정정 보부재의 해석적 내화성능 연구 (Study on Fire Resistance Performance According to Boundary Conditions for Beams Made of High-Strength Structural Steels Using Analytical Methods)

  • 권인규
    • 한국화재소방학회논문지
    • /
    • 제29권5호
    • /
    • pp.23-28
    • /
    • 2015
  • 건축물의 공간 효율성 증대를 주 목적으로 고강재 강재(SM 520)의 사용이 활성화되고 있으나, 화재와 같은 고온조건에서의 보부재에 대한 내화성능은 검증되지 못하고 있는 실정이다. 따라서 본 연구에서는 SM 520강재가 적용된 양단 고정단 경계조건인 부정정 보부재를 대상으로 표준화재온도곡선과 고온에서의 항복강도, 탄성계수 그리고 비열, 선팽창계수를 적용하는 해석적 방법을 통하여 내화성능을 평가하고, 이를 바탕으로 일반 구조용 강재에 의한 보부재의 내화성능 평가의 안전성을 확인하였다.

Mechanical Behavior and Numerical Estimation of Fracture Resistance of a SCS6 Fiber Reinforced Reaction Bonded Si$_3$N$_4$ Continuous Fiber Ceramic Composite

  • Kwon, Oh-Heon;Michael G. Jenkins
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1093-1101
    • /
    • 2002
  • Continuous fiber ceramic composites (CFCCs) have advantages over monolithic ceramics : Silicon Nitride composites are not well used for application because of their low fracture toughness and fracture strength, but CFCCs exhibit increased toughness for damage tolerance, and relatively high stiffness in spite of low specific weight. Thus it is important to characterize the fracture resistance and properties of new CFCCs materials. Tensile and flexural tests were carried out for mechanical properties and the fracture resistance behavior of a SCS6 fiber reinforced Si$_3$N$_4$ matrix CFCC was evaluated. The results indicated that CFCC composite exhibit a rising R curve behavior in flexural test. The fracture toughness was about 4.8 MPa$.$m$\^$1/2 , which resulted in a higher value of the fracture toughness because of fiber bridging. Mechanical properties as like the elastic modulus, proportional limit and the ultimate strength in a flexural test are greater than those in a tensile test. Also a numerical modeling of failure process was accomplished for a flexural test. This numerical results provided a good simulation of the cumulative fracture process of the fiber and matrix in CFCCs.

A simulative method for evaluating the resistance of the flight deck's operational capability to the attack of anti-ship weapons

  • Yang, Fangqing;Wang, Chao;Liao, Quanmi;Huang, Sheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권6호
    • /
    • pp.563-576
    • /
    • 2016
  • The flight deck of an aircraft carrier is relatively vulnerable compared to its hull, as the damage of some subsystems on the flight deck may cause the carrier losing its operational capability. Therefore, this work aims to represent a simulative method for evaluating the resistance of the flight deck's operational capability in the condition that the aircraft carrier is together with its strike group and the enemy uses the anti-ship missiles with the cluster warheads to attack. In the simulations, the susceptibility of the carrier and the vulnerability of the aircraft guarantee resources are gained. Then, with the help of the closed queuing network, the residual sortie generation rate can be solved, which reflects the flight deck's residual operational capability. The results have proven that the flight deck is of strong resistance to these attacks while it is very sensitive to the loss of some key aircraft guarantee resources.

감자바이러스 Y 및 역병 저항성 연초 버어리종 신품종 KB 110의 육성 및 농경적 특성 (Breeding of Burley Tobacco KB 110 Resistant to PVY and Black Shank and its Agromomic Characteristics)

  • 정석훈;최상주;조천준;조명조
    • 한국연초학회지
    • /
    • 제19권2호
    • /
    • pp.83-91
    • /
    • 1997
  • The vein-necrosis strain or potato virus Y (PVY-Vff) and black shank (Phytophlhora parasitica roar. nicotianae) causes severe damage on burley tobacco(Wicotiana tabacum L.) in Korea, A new burley tobacco resistance to PVY and black shank, KB 110, was developed by Korea Ginseng and Tobacco Research Institute. It was developed from the cross of Burley 21 with TC 591 in 1990, and was backrossed to Burley 21 in the following season. TC 591 has resistance to PVY and moderate resistance to race 0 of black shank, but it is susceptible to tobacco mosaic vim (TMV). KB 110 was evaluated for its resistance to PVY, TMV and black shank in the greenhouse and at fields for preliminary and performance trials. KB 110 which has secreting glandular trichomes was resistant to PVY-VN, TW and black shank. It had an erect growth habit and two more leaves per plant than that of Burley 21, and matures two to three days later. It yielded approximately 3 percent more cured leaf than the standard cultivar Burley 21, but other plant characteristics were very similar to those of Burley 21. It had acceptable standards for chemical and physical characteristics of lured leaf on regional farm test in 1995-1997. KB 110 produced average yields of good quality tobaccos and was appeared to be resistant to PVY inwhere occurrence of the virus are severe chronic at burley growing area.

  • PDF

건식 경량벽체의 연질 충격체에 의한 내충격성 판정기준에 관한 연구 (Criteria of Impact Resistance of Lightweight Wall by the Large Soft Body)

  • 김기준;송정현;최수경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.102-103
    • /
    • 2014
  • Due to the nature of the existing load, the criteria of assessing the intensity of the lightweight wall's impact resistance has been though of as obscure. The current study, therefore, focuses on the standardized assessment of the impact resistance to the force of the large soft body applying to the lightweight wall. The gypsum board wall showed a low level of the maximum residual displacement. It is, however, required to be careful about the selection of the finishing process since the high level of the maximum displacement is likely to cause harm to finishing materials. Unlike the gypsum board, the ALC block wall displayed a considerable rigidity while showing almost no maximum residual displacement. Even with the low level of the maximum displacement due to the stiffness, the ALC block wall is still likely to be affected by the vibration derived from any impact on the surface, which demands a need for additional study. The future experimental study, accordingly, will focus on the impact of the vibration on finishing materials, consequently leading to the accurate prediction of the possibility of potential damage to the lightweight wall caused by the large soft body.

  • PDF

Test study on the impact resistance of steel fiber reinforced full light-weight concrete beams

  • Yang, Yanmin;Wang, Yunke;Chen, Yu;Zhang, Binlin
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.567-575
    • /
    • 2019
  • In order to investigate the dynamic impact resistance of steel fiber reinforced full light-weight concretes, we implemented drop weight impact test on a total of 6 reinforced beams with 0, 1 and 2%, steel fiber volume fraction. The purpose of this test was to determine the failure modes of beams under different impact energies. Then, we compared and analyzed the time-history curves of impact force, midspan displacement and reinforcement strain. The obtained results indicated that the deformations of samples and their steel fibers were proportional to impact energy, impact force, and impact time. Within reasonable ranges of parameter values, the effects of impact size and impact time were similar for all volumetric contents of steel fibers, but they significantly affected the crack propagation mechanism and damage characteristics of samples. Increase of the volumetric contents of steel fibers not only effectively reduced the midspan displacement and reinforcement strain of concrete samples, but also inhibited crack initiation and propagation such that cracks were concentrated in the midspan areas of beams and the frequency of cracks at supports was reduced. As a result, the tensile strength and impact resistance of full light-weight concrete beams were significantly improved.

Epidemiological Concepts and Strategies in Breeding Soybeans for Disease Resistance

  • Seung Man, Lim
    • 한국작물학회지
    • /
    • 제35권1호
    • /
    • pp.97-107
    • /
    • 1990
  • The epidemiology of plant disease deals with the dynamic processes of host-pathogen interactions, which determine the prevalence and severity of the disease. Epidemic processes for most foliar diseases of plants follow a series of steps: arrival of pathogens on plant surfaces, initial infection, incubation period, latent period, sporulation, dissemination of secondary inoculum, and infectious period. These complex biological processes are influenced by the environment-Man also often interfers with these processes by altering the host and pathogen populations and the environment. Slowing or halting any of the epidemic processes can delay the development of the epidemic, so that serious losses in yield due to disease do not occur. It is generally recognized that the most effective and efficient method of minimizing disease damage is through the use of resistant cultivars, particularly when other methods such as fungicide applications are not economically feasible-Populations of plant pathogens are not genetically uniform nor are they necessarily stable. Cultivars bred for resistance to current populations of a pathogen may not be resistant in the future due to selection pressures placed on the pathogen populations. Understanding population development and genetic variability in the pathogen, and knowledge of the genetics of resistance in the plant should help in developing breeding strategies that wi1l provide effective and stable disease control through genetic resistance. In the United States, soybeans have ranked first in value of crops sold off the farm in recent years. Soybeans have been the leading U. S.

  • PDF