• 제목/요약/키워드: Damage Resistance

검색결과 1,254건 처리시간 0.025초

Damage detection of composite materials via IR thermography and electrical resistance measurement: A review

  • Park, Kundo;Lee, Junhyeong;Ryu, Seunghwa
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.563-583
    • /
    • 2021
  • Composite materials, composed of multiple constituent materials with dissimilar properties, are actively adopted in a wide range of industrial sectors due to their remarkable strength-to-weight and stiffness-to-weight ratio. Nevertheless, the failure mechanism of composite materials is highly complicated due to their sophisticated microstructure, making it much harder to predict their residual material lives in real life applications. A promising solution for this safety issue is structural damage detection. In the present paper, damage detection of composite material via electrical resistance-based technique and infrared thermography is reviewed. The operating principles of the two damage detection methodologies are introduced, and some research advances of each techniques are covered. The advancement of IR thermography-based non-destructive technique (NDT) including optical thermography, laser thermography and eddy current thermography will be reported, as well as the electrical impedance tomography (EIT) which is a technology increasingly drawing attentions in the field of electrical resistance-based damage detection. A brief comparison of the two methodologies based on each of their strengths and limitations is carried out, and a recent research update regarding the coupling of the two techniques for improved damage detection in composite materials will be discussed.

초음파 감쇠 및 전기저항 측정법에 의한 발전소 고온배관의 크리프손상 평가 (Nondestructive Creep Damage Evaluation of High-Temperature Pipelines by Ultrasonic Attenuation Measurement and Electric Resistance Methods)

  • 이인철;길두송;정계조;조용상;이상국
    • 한국해양공학회지
    • /
    • 제13권3호통권33호
    • /
    • pp.100-107
    • /
    • 1999
  • Due to the high temperature and pressure, the materials of pipeline in power plant are degraded by creep damage. So far, many conventional measurement techniques such as replica method, electric resistance method, adn hardness test method for creep damage have been used. Among them, the replica method has mainly been used for the inspection of components. But this technique is restricted to the applications at the surface of the objects and cannot be used to material inside. In this paper, the measuring methods of evaluation by using ultrasonic attenuation and electric resistance for the creep detection of creep damage in the form of cavities on grain boundaries or intergranular microcracks were carried out. Absolute measuring method of quantitave ultrasonic attenuation technique for 1Cr0.5Mo material degradation was analyzed for determining the creep degradation steps using life prediction formula. As a result of measurement for creep specimens, we founded that the coefficient of utrasonic attenuation was increased as the increase of creep life fracton(${phi}c$) and the decreasing rate of wlwctric resistance was also increased.

  • PDF

화재진압시간에 따른 콘크리트의 염해저항성 평가 (Evaluation of Salt Damage Resistance of Concrete according to Fire Control Time)

  • 이준해;박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.109-110
    • /
    • 2020
  • In the event of a fire, fire engines usually arrive within 15 minutes and become a fire suppressor. In this paper, an analytical model was established to evaluate the salt damage resistance of concrete according to fire suppression time, and the concentration of salt inside the concrete after fire was measured and the time to reach the critical concentration was assessed by how short.

  • PDF

비저항에 따른 가스보일러용 304스테인리스강재의 손상거동에 관한 연구 (Study on the Damage Behavior of 304 Stainless Steel for Gas Boiler with Specific Resistance)

  • 윤병두;임우조;정기철
    • 한국가스학회지
    • /
    • 제9권4호
    • /
    • pp.6-10
    • /
    • 2005
  • 이 논문은 비저항에 따른 가스보일러용 오스테나이트계 스테인리스강(STS304)재의 손상거동에 관해 연구하기 위하여, 비저항에 따른 전기화학적 분극시험을 수행하였다. 그리고 비저항에 따른 가스보일러용 STS304강의 양극분극특성 및 손상거동인 공식양상을 고찰하였다. 비저항이 감소할수록 STS304강의 부동태유지전류밀도는 증가하고 부동태영역은 작아지고 있으며, 관통전위는 낮아지고 있다 또한 비저항이 가장 높은 $74{\Omega}{\cdot}m$중에서 손상거동인 공식양상은 거의 나타나지 않고, 비저항이 낮아질수록 손상거동인 공식양상은 더욱 성장되고, 공식수가 점점 증가하는 경향을 보이고 있다.

  • PDF

Fire Resistance Characteristics of Firewall Structure Associated with Impact Damage Induced by Explosion

  • Hye Rim Cho;Jeong Hwa Yoo;Jung Kwan Seo
    • 한국해양공학회지
    • /
    • 제37권3호
    • /
    • pp.99-110
    • /
    • 2023
  • When a fire accident accompanied by an explosion occurs, the surrounding firewalls are affected by impact and thermal loads. Damaged firewalls due to accidental loads may not fully perform their essential function. Therefore, this paper proposes an advanced methodology for evaluating the fire resistance performance of firewalls damaged by explosions. The fragments were assumed to be scattered, and fire occurred as a vehicle exploded in a large compartment of a roll-on/roll-off (RO-RO) vessel. The impact velocity of the fragments was calculated based on the TNT equivalent mass corresponding to the explosion pressure. Damage and thermal-structural response analyses of the firewall were performed using Ansys LS-DYNA code. The fire resistance reduction was analyzed in terms of the temperature difference between fire-exposed and unexposed surfaces, temperature increase rate, and reference temperature arrival time. The degree of damage and the fire resistance performance of the firewalls varied significantly depending on impact loads. When naval ships and RO-RO vessels that carry various explosive substances are designed, it is reasonable to predict that the fire resistance performance will be degraded according to the explosion characteristics of the cargo.

필라멘트 와인딩 복합재 압력용기의 충격저항성에 미치는 표면 고무 보호재료의 영향 (The Effect of Surface Protective Material on the Impact Resistance in Filament Wound Composite Pressure Vessel)

  • 강기원;김용수;이미애;최린
    • 한국안전학회지
    • /
    • 제20권4호
    • /
    • pp.14-19
    • /
    • 2005
  • One area in which composites have been used rather extensively is for fabricating pressure vessel. These structures can be readily manufactured by filament winding, which is, as far as composite fabrication techniques are concerned, a relatively inexpensive method for producing composite structures. Unfortunately, the higher strength material and fabrication costs are not the only disadvantages of fiber-reinforced polymer composites when they are compared to metals. Additionally, these materials tend to exhibit brittle behavior. This is of particular concern when they are subjected to a low-velocity impact during routine handling a significant amount of structural damage can be introduced into the composites. The goals of this paper are to understand the impact damage behavior and identify the effect of surface coating materials on impact resistance in filament wound composite pressure vessels. For these, a series of low velocity impact tests was performed on specimens cutting from the full scale pressure vessel by the instrumented impact testing machine. The specimens are classified into two types with and without surface protective material. The visualization for impact damage is made by metallurgical microscope. Based on the impact force history and damage, the resistance parameters were employed and its validity in identifying the damage resistance of pressure vessel was reviewed. As the results, the impact resistance of the filament wound composites and its dependency on the protective material were evaluated quantitatively.

Ductile Fracture Behaviour under Mode I Loading Using Rousellier Ductile Damage Theory

  • Oh, Dong-Joon;Howard, I.C.;Yates, J.R.
    • Journal of Mechanical Science and Technology
    • /
    • 제14권9호
    • /
    • pp.978-984
    • /
    • 2000
  • The aim of this study is to investigate the ductile fracture behaviour under Mode I loading using SA533B pressure vessel steel. Experiments consist of the Round Notch Bar Test (RNB), Single Edge Crack Bending Test (SECB), and V-Notch Bar Test (VNB). Results from the RNB test were used to tune the damage modelling constant. The other tests were performed to acquire the J-resistance curves and to confirm the damage constants. Microstructural observation includes the measurement of crack profile to obtain the roughness parameter. Finally, simulation using Rousellier Ductile Damage Theory (RDDT) was carried out with 4-node quadrilateral element ($L_c=0.25\;mm$). For the crack advance, the failed element removal technique was adopted with a ${\beta}$ criterion. In conclusion, the predicted simulation using RDDT showed a good agreement with the experimental results. A trial using a roughness parameter was made for a new evaluation of J-resistance curve, which is more conservative than the conventional one.

  • PDF

Failure Analysis for High via Resistance by HDP CVD System for IMD Layer

  • Kim, Sang-Yong;Chung, Hun-Sang;Seo, Yong-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권4호
    • /
    • pp.1-4
    • /
    • 2002
  • As the application of semiconductor chips into electronics increases, it requires more complete integration, which results in higher performance. And it needs minimization in device design for cost saving of manufacture. Therefore oxide gap fill has become one of the major issues in sub-micron devices. Currently HDP (High-Density Plasma) CVD system is widely used in IMD (Inter Metal Dielectric) to fill narrower space between metal lines. However, HDP-CVD system has some potential problems such as plasma charging damage, metal damage and etc. Therefore, we will introduce about one of via resistance failure by metal damage and a preventive method in this paper.

필라멘트 와인딩 복합재 압력용기의 저속충격손상 평가에 관한 연구 (Assessment of Low Velocity Impact Damage of Filament Wound Composite Vessels with Surface Protective Materials)

  • 이장호;강기원
    • 한국산학기술학회논문지
    • /
    • 제11권8호
    • /
    • pp.2741-2749
    • /
    • 2010
  • 본 논문은 필라멘트 와인딩 공법으로 제조된 복합재 압력용기의 충격손상 및 이에 대한 표면 보호재료의 영향을 평가한 것이다. 낙하식 충격시험기를 이용하여 기본 패널과 보호재료(고무, kevlar/epoxy 및 glass/epoxy)가 표면에 접착되어 있는 보호 패널에 대한 저속 충격시험을 실시하였다. 복합재 압력용기의 손상 저항성에 대한 표면 보호재료의 영향을 정량화하기 위하여 충격손상 파라미터를 도입하였다. 복합재 압력용기의 손상 저항성은 충격압자의 형상과 관계없이 표면 보호재료의 영향을 크게 받았으며 이러한 표면 보호재료중 glass/epoxy가 가장 큰 보호효과를 나타내었다.

전기저항 측정법을 이용한 탄소나노튜브/폴리프로필렌 나노복합재료의 내부 손상 예측 (Electrical Resistance Measurement in Characterizing the Internal Damage of Carbon Nanotube/Polypropylene Nanocomposites)

  • 김학수;권동준;왕작가;구가영;김대식;이춘수;박종만
    • Composites Research
    • /
    • 제26권3호
    • /
    • pp.201-206
    • /
    • 2013
  • 전기저항 측정법을 이용하여 전도성을 띄는 소재는 손상예측이 가능하다. 본 연구에서는 차량용 소재로 이용하는 폴리프로필렌(PP)를 이용할 때 재료 내부에 발생될 손상 평가법을 고안하였다. PP 내부에 전도성을 부여하기 위해 탄소나노튜브(CNT)를 0.5 wt% 삽입하여 CNT/PP 복합재료를 제조하였다. 손상 평가를 하기 위해 시편 내부에 구리선을 삽입하여 가로와 세로, 대각선 구간을 설정하여 측정하였다. 시편의 모형은 $20^{\circ}$ 휘어진 시편을 사용하였다. 동적 압축 실험에 따른 전기저항 측정을 통해 구간별로 전기저항 변화도를 분석하였다. 동적 압축 실험에 따른 구간별 전기저항 변화도의 신호는 재료 내부에 전가된 응력을 나타내는 신호이다. 전기저항 측정 구간에서 전기저항 변화도가 높은 경우는 미세 손상이 발생되었음을 의미한다. 전기저항 측정법을 이용한 동적 압축 실험에 따른 예상 손상부위와 실제 파괴 실험을 통해 본 평가 방법을 이용하여 재료 내부 미세 손상을 예측할 수 있는 방법임을 확인하였다.