• Title/Summary/Keyword: Damage Resistance

Search Result 1,254, Processing Time 0.022 seconds

Impedance-Based Damage Diagnosis on Bolt-Jointed Structure Under Varying Temperature

  • Shim, Hyo-Jin;Min, Ji-Young;Yun, Chung-Bang;Shin, Sung-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.3
    • /
    • pp.260-270
    • /
    • 2011
  • The electromechanical impedance(E/M)-based method detects local structural damages based on variations of electrical impedance signatures which are obtained from piezoelectric sensors bonded to the structure and excited in high frequency band. In this method, temperature changes may result in significant impedance variations and lead to erroneous diagnostic results of the structure. To tackle this problem, a new technique providing a 2-dimensional damage feature related to the temperature information is proposed to distinguish the structural damage from the undesirable temperature variation. For experimental tests to validate the proposed method, damages are introduced by bolt loosening to a bolt-jointed steel beam, and impedance signals are measured under varying temperature conditions through a piezoelectric sensor attached on the beam. A freely suspended piezoelectric sensor is additionally utilized to obtain temperature information indirectly from resistance signatures. From a relationship between the damage index (from a constrained sensor) and the temperature (from a freely suspended sensor or a temperature sensor), damages can be detected more clearly under varying temperature compared to other conventional approaches.

Effect of Reinforcement Ratio and Impact Velocity on Local Damage of RC Slabs (철근비 및 충돌속도가 RC 슬래브의 국부손상에 미치는 효과)

  • Choi, Hyun;Chung, Chul Hun;Yoo, Hyeon Kyeong;Kim, Sang Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.311-321
    • /
    • 2011
  • To analysis the effect of reinforcement ratio and impact velocity on local damage, a series of impact analyses are performed to predict local effects. According to these results, the reinforcement ratio has no effect on the penetration depth and perforation thickness, but notable change to the scabbing area were observed. The higher the missile velocity becomes, the greater the degree of local damage to the reinforced concrete slabs is. Analysis results will be useful in the impact-resistance design of containment buildings and structures.

Comparison of Fatigue Damage of Linear Elastic System with Respect to Vibration Input Conditions (입력가진 조건에 따른 선형 시스템의 피로손상도 비교 평가)

  • Heo, Yun Seok;Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.437-443
    • /
    • 2014
  • Vibration testing is conducted for evaluate the fatigue resistance of responsible system over excitation situations and two kinds of vibration profiles, harmonic or random, are widely used in engineering fields. Harmonic excitation profile is adequate for the rotating machinery that is primarily exposed to the orderly excited force subjected for a rotating speed; Random profile is suitable for the non-stationary vibration input, that is a ground excitation for example. Recently, the sine on random(SOR) testing method was sometimes considered to represent the real excitation conditions since the measured response signals of a target system, expecially for moving mobility, shows usually a mixture of them. So, it is important to understand the accumulated fatigue damage over different excitation patterns, harmonic and/or random, to determine the efficient vibration profile of a target system. A uniaxial vibration testing with a notched simple beam was introduced to evaluate the fatigue damage for different excitation profiles and the best choice of vibration profile was concluded from those comparison of calculated fatigue damages.

Comparison of fatigue damage of linear elastic system with respect to vibration input conditions (입력가진 조건에 따른 선형 시스템의 피로손상도 비교 평가)

  • Kim, Chan-Jung;Heo, Yun Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.340-345
    • /
    • 2014
  • Vibration testing is conducted for evaluate the fatigue resistance of responsible system over excitation situations and two kinds of vibration profiles, harmonic or random, are widely used in engineering fields. Harmonic excitation profile is adequate for the rotating machinery that is primarily exposed to the orderly excited force subjected for a rotating speed; Random profile is suitable for the non-stationary vibration input, that is a ground excitation for example. Recently, the sine on random (SOR) testing method was sometimes considered to represent the real excitation conditions since the measured response signals of a target system, expecially for moving mobility, shows usually a mixture of them. So, it is important to understand the accumulated fatigue damage over different excitation patterns, harmonic and/or random, to determine the efficient vibration profile of a target system. A uniaxial vibration testing with a notched simple beam was introduced to evaluate the fatigue damage for different excitation profiles and the best choice of vibration profile was concluded from those comparison of calculated fatigue damages.

  • PDF

Contact Damage and Strength Degradation of Yttria doped Tetragonal Zirconia Polycrystal (Y$_2$O$_3$ 를 첨가한 정방정 지르코니아에서의 접촉손상 및 강도저하)

  • 정연길;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.429-436
    • /
    • 1998
  • The mechanical properties and damage mode of {{{{ {Y}_{2 } {O}_{3} }}-doped tetragonal (Y-TZP) can-didated as biomaterials were performed under indentation stress-strain curve critical load for yield and cracking strength degradation and fatigue behavior with Hertzian indentation tests. This material shows the brittle behavior which is confirmed by indentation stress-strain response. The critical load for cracking(Pc) is much higher than that for yields (Py) indicating crack resistance Strength were strongly dependant on contact area and there were no degradation when the indenter size was ${\gamma}$=3.18 mm suggesting that Y-TZP should be highly damage tolerant to the blunt contacts. Multi-cycle contact were found to be innocuous up to {{{{ {10 }^{6 } }} cycles at 500N and {{{{ {10 }^{5 } }} cycles at 1000N in water. On the other hand contacts at {{{{ {10 }^{6 } }} cycles at 1000 N in water did show some signs of incipient degradation. By contrast contacts with Vickers indenter pro-duced substantial strength losses at much lower loads suggesting that the mechanical integrity of this ma-terial would be compromised by inadvertent sharp contacts.

  • PDF

Investigation on Galvanostatic Method to Protect Cavitation-corrosion Damage for Cu Alloy in Sea Water (해양환경 하에서 동합금의 캐비테이션-부식손상 방지를 위한 방식정전류 기법 연구)

  • Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.25-30
    • /
    • 2012
  • The galvanostatic tests for corrosion protection are conducted at various applied current densities during 93,600 sec, and evaluated in terms of the variations in current density with time and in the potential at the applied current density. In addition, the corrosion damage depth is analyzed with 3D analysis optical microscope after galvanostatic tests. In this study, it was investigated to decide condition of the corrosion protection gavalnostatic method for Cu-Al alloy that has an excellent corrosion resistance. In the galvanostatic test under the cavitation environment, the energy was reflected or cancelled out by the collision with the oxygen gas generated by the oxygen reduction action. The surface observation showed neither the cavitation damage nor the electrochemical damage in the current density over 0.01 $A/cm^2$ in the dynamic state under the cavitation environment.

Evaluation of Residual Strength in Aircraft Composite Under Impact Damage (충격손상을 받은 항공기용 복합재료의 잔류강도 평가)

  • Choi, Jung-Hun;Kang, Min-Sung;Shin, In-Hwan;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.94-101
    • /
    • 2010
  • Composite materials have a higher specific strength and modulus than traditional metallic materials. Additionally, these materials offer new design flexibilities, corrosion and wear resistance, low thermal conductivity and increased fatigue life. These, however, are susceptible to impact damage due to their lack of through-thickness reinforcement and it causes large drops in the load-carrying capacity of a structure. Therefore, the impact damage behavior and subsequently load-carrying capacity of impacted composite materials deserve careful investigation. In this study, the residual strength and impact characteristics of plain-woven CFRP composites with impact damage are investigated under axial tensile test. Impact test was performed using drop weight impact tester. And residual strength behavior by impact was evaluated using the caprino model. Also we evaluated behavior of residual strength by change of mass and size of impactor. Examined change of residual strength by impact energy change through this research and consider impactor diameter in caprino model.

A Study on the Mechanical Properties and Contact Damage of Silicon Nitrides : 1. Effect of ${\alpha}/{\beta}$ Phase Fraction (질화규소의 기계적 성질 및 접촉 손상: I. ${\alpha}/{\beta}$ 상분율의 영향)

  • 이승건
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.15-21
    • /
    • 1998
  • The effect of $\alpha$/$\beta$ phase on the mechanical properties and contact damage of silicon nitrides $Si_3N_4$) was investigated. Silicon nitride materials were prepared from two starting powders, at selective increasing hot-pressing temperatures to coarsen the microstructures: (i) from relatively coarse $\alpha$-phase powder, essentially equiaxed $\alpha$-$Si_3N_4$ grains, with limited, slow transformation to $\beta$-$Si_3N_4$ grain; (ii) from relatively fine $\alpha$-phase powder, a more rapid transformation to $\beta$-$Si_3N_4$, with attendant grain elongation. The resulting micro-structure thereby provided a spectrum of $\alpha$/$\beta$ phase ratios, grain sizes, and grain shapes. Fracture strength, hardness, and toughness were measured, and contact damage and strength degradation after indentation were investigated by Hertzian indentation using spherical indenter. A brittle to ductile transition in $Si_3N_4$ depended on $\alpha$/$\beta$ phase ratio as well as grain size. Silicon nitride with elongated $\beta$ grains showed a superior, contact damage resistance.

  • PDF

Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Test Method (초음파에 의한 발전소 고온배관재료의 크리프손상 평가)

  • Lee, Sang-Guk;Chung, Min-Hwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.99-107
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions which are high temperature and high pressure for an extended period time. Such material degradation leads to various component failures causing serious accidents at the plants. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this paper, artificial creep degradation test and ultrasonic measurement for their creep degraded specimens have been carried out for the purpose of evaluation for creep damage which can occur in high-temperature pipeline of fossil power plant. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep degradationtests using life prediction formula were carried out. As a result of ultrasonic tests for crept specimens, we confirmed that the sound velocity decreased and the attenuation coefficient linearly increased in proportion to the increase of creep fractiin(${\phi}$c).

  • PDF

A Study on Low-Velocity Impact Characterization of Various Sandwich Panels for the Korean Low Floor Bus Application (초저상 버스 차체 적용을 위한 샌드위치 패널들의 저속충격 특성 연구)

  • Lee, Jae-Youl;Lee, Sang-Jin;Shin, Kwang-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.506-516
    • /
    • 2007
  • In this paper, a study on low-velocity impact response of four different sandwich panels for the hybrid bodyshell and floor structure application of the Korean low floor bus vehicle was done. Square samples of 100mm sides were subjected low-velocity impact loading using an instrumented testing machine at six energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for four different types of sandwich panels. The impact damage size and depth of the permanent indentation were measured by 3-Dimensional Scanner. Failure modes were studied by sectioning the specimens and observed under optical microscope. The impact test results show that sandwich panel with composite laminate facesheet could not observe damage mode of a permanent visible indentation after impact and has a good impact damage resistance in comparison with sandwich panel with metal aluminum facesheet.