• 제목/요약/키워드: Damage Location

검색결과 948건 처리시간 0.022초

파동전파특성에 기초한 구조 건전도 모니터링 (Structural Health Monitoring Based on Wave Propagation Characteristics)

  • 김승준;박준홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.311-314
    • /
    • 2007
  • The experimental method of measuring dynamic properties of structures was presented. The method is based on the flexural wave propagation characteristics. Using the method, change in structural dynamic properties due to damage is measured. The crack has much more significant impact on the strain energy than the inertial effects. From this, the sensitivity of the dynamic stiffness on the crack location is estimated by calculating the strain energy. When the wave propagates, the strain and kinetic energies shows cyclic changed over space. The crack that occurred at locations where the wave energy is in the form of the potential energy affected most significantly the wave propagation characteristics. The effects of crack location on the wave propagation were used to determine the crack location.

  • PDF

Forklift 운전자의 계기판 인지성에 따른 Visual object의 layout과 위치에 관한 분석 (Analysis about visual object's layout and position by forklift driver's instrument cognitivity)

  • 정우근;박범
    • 대한안전경영과학회지
    • /
    • 제7권5호
    • /
    • pp.97-105
    • /
    • 2005
  • Achievement degree can be improved by display offering more effective process about cognitive, pattern recognition than making observers use memory, integration, and cognitive process of control. And this research is proved by several scholars' researches [4][5][7][9]. In this study, researches was conducted about cognition according to layout of object in instrument panel. To decide layout of instrument panel, Cognition value was preferentially decided about all location. And then, objects are arranged to correct position of low cognition following the inferior procedure about each location. As a result, we get conclusion that gauge location is taken in high importance order through mechanical importance degree bringing huge damage during driving forklift-truck.

Computed tomography-guided 3D printed patient-specific regional anesthesia

  • Jundt, Jonathon S.;Chow, Christopher C.;Couey, Marcus
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제20권5호
    • /
    • pp.325-329
    • /
    • 2020
  • Classic anesthetic techniques for the inferior alveolar nerve, lingual nerve, and long buccal nerve blockade are achieved by estimating the intended location for anesthetic deposition based on palpation, inspection, and subsequent correlation for oral anatomical structures. The present article utilizes computed tomography (CT) data to 3D print a guide for repeatable and accurate deposition of a local anesthetic at the ideal location. This technical report aims to anatomically define the ideal location for local anesthetic deposition. This process has the potential to reduce patient discomfort, risk of nerve damage, and failed mandibular anesthesia, as well as to reduce the total anesthetic dose. Lastly, as robotic-based interventions improve, this provides the initial framework for robot-guided regional anesthesia administration in the oral cavity.

Simultaneous identification of damage in bridge under moving mass by Adjoint variable method

  • Mirzaee, Akbar;Abbasnia, Reza;Shayanfar, Mohsenali
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.449-467
    • /
    • 2018
  • In this paper, a theoretical and numerical study on bridge simultaneous damage detection procedure for identifying both the system parameters and input excitation mass, are presented. This method is called 'Adjoint Variable Method' which is an iterative gradient-based model updating method based on the dynamic response sensitivity. The main advantage of proposed method is inclusion of an analytical method to augment the accuracy and speed of the solution. Moving mass is a model which takes into account the inertia effects of the vehicle. This interaction model is a time varying system and proposed method is capable of detecting damage in this variable system. Robustness of proposed method is illustrated by correctly detection of the location and extension of predetermined single, multiple and random damages in all ranges of speed and mass ratio of moving vehicle. A comparison study of common sensitivity and proposed method confirms its efficiency and performance improvement in sensitivity-based damage detection methods. Various sources of errors including the effects of measurement noise and initial assumption error in stability of method are also discussed.

Damage detection in structural beam elements using hybrid neuro fuzzy systems

  • Aydin, Kamil;Kisi, Ozgur
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.1107-1132
    • /
    • 2015
  • A damage detection algorithm based on neuro fuzzy hybrid system is presented in this study for location and severity predictions of cracks in beam-like structures. A combination of eigenfrequencies and rotation deviation curves are utilized as input to the soft computing technique. Both single and multiple damage cases are considered. Theoretical expressions leading to modal properties of damaged beam elements are provided. The beam formulation is based on Euler-Bernoulli theory. The cracked section of beam is simulated employing discrete spring model whose compliance is computed from stress intensity factors of fracture mechanics. A hybrid neuro fuzzy technique is utilized to solve the inverse problem of crack identification. Two different neuro fuzzy systems including grid partitioning (GP) and subtractive clustering (SC) are investigated for the highlighted problem. Several error metrics are utilized for evaluating the accuracy of the hybrid algorithms. The study is the first in terms of 1) using the two models of neuro fuzzy systems in crack detection and 2) considering multiple damages in beam elements employing the fused neuro fuzzy procedures. At the end of the study, the developed hybrid models are tested by utilizing the noise-contaminated data. Considering the robustness of the models, they can be employed as damage identification algorithms in health monitoring of beam-like structures.

정적 및 동적 응답을 이용한 교량의 손상도 추정 기법 (Damage Identification Technique for Bridges Using Static and Dynamic Response)

  • 박우진
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.119-126
    • /
    • 2005
  • Load bearing structural members in a wide variety of applications accumulate damage over their service life. From a standpoint of both safety and performance, it is desirable to monitor the occurrence, location, and extent of such damage. Structures require complicated element models with a number of degrees of freedom in structural analysis. During experiment much effort and cost is needed for measuring structural parameters. The sparseness and errors of measured data have to be considered during the parameter estimation Of Structures. In this paper we introduces damage identification algorithm by a system identification(S.I) using static and dynamic response. To study the behaviour of the estimators in noisy environment Using Monte Carlo simulation and a data measured perturbation scheme is adopted to investigate the influence of measurement errors on identification results. The assessment result by static and dynamic response were compared, and the efficiency and applicabilities of the proposed algorithm are demonstrated through simulated static and dynamic responses of a truss bridge. The assessment results by each method were compared and we could observe that the 5.1 method is superior to the other conventional methods.

손상평가와 구조물 신뢰성과의 연계 (Linkage of Damage Evaluation to Structural System Reliability)

  • 박수용
    • 한국강구조학회 논문집
    • /
    • 제15권1호
    • /
    • pp.41-50
    • /
    • 2003
  • 구조물에 대한 비파괴 손상평가는 손상 전과 손상 후의 동적 특성으로부터 손상의 위치와 그 크기에 대한 정보를 제공한다. 기존 구조물의 시스템 신뢰도를 추정하기 위해서는 이러한 비파괴 손상평가의 결과가 부재요소의 파괴확률에 반영되어야 한다. 구조 부재의 파괴확률은 각 부재의 파괴함수로부터 신뢰성 이론을 이용하여 구할 수 있다. 본 논문에서는 각 부재의 파괴확률로부터 직접 구조 시스템의 파괴확률을 구할 수 있는 식을 제안하였다. 손상평가와 신뢰성평가 분야의 연계는 철골조 단층 프레임의 수치해석 모델에 인위적인 손상을 가하여 손상 전과 손상 후의 모달 변수를 이용하여 그 타당성을 입증하였다.

Dynamic analysis and shear connector damage identification of steel-concrete composite beams

  • Hou, Zhongming;Xia, He;Zhang, YanLing
    • Steel and Composite Structures
    • /
    • 제13권4호
    • /
    • pp.327-341
    • /
    • 2012
  • With the advantages of large span, light deadweight and convenient construction, the steel-concrete composite beam (SCCB) has been rapidly developed as a medium span bridge. Compared with common beams, the global stiffness of SCCB is discontinuous and in a staged distribution. In this paper, the analysis model for the simply-supported SCCB is established and the vibration equations are derived. The natural vibration characteristics of a simply-supported SCCB are analyzed, and are compared with the theoretical and experimental results. A curvature mode measurement method is proposed to identify the shear connector damage of SCCB, with the stiffness reduction factor to describe the variation of shear connection stiffness. By analysis on the $1^{st}$ to $3^{rd}$ vertical modes, the distribution of shear connectors between the steel girder and the concrete slab are well identified, and the damage locations and failure degrees are detected. The results show that the curvature modes can be used for identification of the damage location.

Damage identification of 2D and 3D trusses by using complete and incomplete noisy measurements

  • Rezaiee-Pajand, M.;Kazemiyan, M.S.
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.149-172
    • /
    • 2014
  • Four algorithms for damage detection of trusses are presented in this paper. These approaches can detect damage by using both complete and incomplete measurements. The suggested methods are based on the minimization of the difference between the measured and analytical static responses of structures. A non-linear constrained optimization problem is established to estimate the severity and location of damage. To reach the responses, the successive quadratic method is used. Based on the objective function, the stiffness matrix of the truss should be estimated and inverted in the optimization procedure. The differences of the proposed techniques are rooted in the strategy utilized for inverting the stiffness matrix of the damaged structure. Additionally, for separating the probable damaged members, a new formulation is proposed. This scheme is employed prior to the outset of the optimization process. Furthermore, a new tactic is presented to select the appropriate load pattern. To investigate the robustness and efficiency of the authors' method, several numerical tests are performed. Moreover, Monte Carlo simulation is carried out to assess the effect of noisy measurements on the estimated parameters.

강우시 도시 하수관거통수능부족 해소를 위한 우수저류시설의 적용 (Application of Stormwater Detention Facilities for Lacking Capacity of Sewers)

  • 김영란;김진영;황성환
    • 상하수도학회지
    • /
    • 제18권3호
    • /
    • pp.343-350
    • /
    • 2004
  • For the last two decades, Seoul has always been affected by large floods. As climate change causes more frequent localized heavy rains exceeding the capacity of sewer or river to discharge water, flood damage is expected to increase. Under the situation, detention facilities for lacking capacity of sewers can control stormwater runoff to reduce flood damage in urbanized areas. In this study, in order to reduce flood damage in Cheonggyecheon areas, the capacity of detention facilities was decided to make up for the lacking capacity of main sewers in case of the rainfall in July, 2001 as large flood. The average amount of stormwater detained in eight Cheonggyecheon drainage areas is $235.09m^3/ha$. Location and size of stormwater detention facilities is designed to have effects in short term by targeting the reduction of flood damage. Schools and parks are suggested as optimal locations where detention facilities are constructed in drainage areas.