• Title/Summary/Keyword: Damage Depth

검색결과 807건 처리시간 0.025초

철근 콘트리트 구조물의 전산에 의한 내진설계법 (Automated Seismic Design Method for Reinforced Concrete Structures)

  • 정영수;전준태;김세열
    • 콘크리트학회지
    • /
    • 제3권3호
    • /
    • pp.111-119
    • /
    • 1991
  • 작금에 사용되고 있는 RC 구조물의 대개의 내진설계기법은 지진시 RC 구조물에 발생되는 손상의 분포상태를 고려치 않고 있다. 본 논문은 철근 콘크리트 구조물의 새로운 내진설계법 즉 Miner's 법칙을 수정한 지진 발생시의 흡수에너지(Dissipated Energy)를 변수로 하는 손상모델(3)를 사용하여 RC 프레임의 각각의 Node에서의 손상정도를 수치적으로 나타내고 이들 손상값의 크기가 전 부재에 고르게 분포토록 하기 위하여 각 부재의 주철근량을 설계변수로 채택한 설계기법을 소개하였다. 사용된 이력모델 및 손상모델의 정확성을 평가하기 위하여 해석적인 하중-변형곡선을 재생하여 실험곡선과 비교분석하였으며 제안된 내진설계법의 유용성은 3-bay 4-story 프레임 모델을 사용하여 입증하였다.

SPH Modeling of Surge Overflow over RCC Strengthened Levee

  • Li, Lin;Amini, Farshad;Rao, Xin;Tang, Hongwu
    • International Journal of Ocean System Engineering
    • /
    • 제2권4호
    • /
    • pp.200-208
    • /
    • 2012
  • Surge overflow may cause damage on earthen levees. Levee strengthened on the levee crest and landward-side slope can provide protection against the erosion damage induced by surge overflow. In this paper, surge overflow of a roller compacted concrete RCC strengthened levee was studied in a purely Lagrangian and meshless approach, the smoothed particle hydrodynamics (SPH) method. After verifying the developed model with analytical solution and comparing the results with full-scale experimental data, the roughness and erosion parameters were calibrated. The water thickness, flow velocity, and erosion depth at crest, landward-side slope and toe were calculated. The characteristics of flow hydraulics and erosion on the RCC strengthened levee are given. The results indicate that the RCC strengthened levee can resist erosion damage for a long period.

The Studies of Irradiation Hardening of Stainless Steel Reactor Internals under Proton and Xenon Irradiation

  • Xu, Chaoliang;Zhang, Lu;Qian, Wangjie;Mei, Jinna;Liu, Xiangbing
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.758-764
    • /
    • 2016
  • Specimens of stainless steel reactor internals were irradiated with 240 keV protons and 6 MeV Xe ions at room temperature. Nanoindentation constant stiffness measurement tests were carried out to study the hardness variations. An irradiation hardening effect was observed in proton- and Xe-irradiated specimens and more irradiation damage causes a larger hardness increment. The Nix-Gao model was used to extract the bulk-equivalent hardness of irradiation-damaged region and critical indentation depth. A different hardening level under H and Xe irradiation was obtained and the discrepancies of displacement damage rate and ion species may be the probable reasons. It was observed that the hardness of Xe-irradiated specimens saturate at about 2 displacement/atom (dpa), whereas in the case of proton irradiation, the saturation hardness may be more than 7 dpa. This discrepancy may be due to the different damage distributions.

Roll의 수명예측 model 개발

  • 배용환;장삼규;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 춘계학술대회 논문집
    • /
    • pp.306-312
    • /
    • 1992
  • The prevention of roll breakage in hot rolling process is improtant to reduce maintenance cost and production loss. Rolling conditions such as the roll force and torque have been intensively studied to overcome the roll breakage. in the present work, a model for life prediction of work rolls under working condition was developed and discussed. The model consists of stress analysis, crack propagation, wear and fatigue calculation model. Roll life can be predicted by stress, crack depth and fatigue damage calculated from this model. The reliability of stress analysis is backed up by the FEM analysis. From the result of simulation using by pressent model, although the fatigue damage of back up roll reachs 80% of practical limit, that of workroll was less than 40%. In edge section of workroll stress amplification is found by wear and bender effect. We can judge that workroll failures are not due to fatigue damage, crack propagation by bending stress but stress amplification by wear and bender in present working condition.

Numerical Simulation of Prestressed Precast Concrete Bridge Deck Panels Using Damage Plasticity Model

  • Ren, Wei;Sneed, Lesley H.;Yang, Yang;He, Ruili
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.45-54
    • /
    • 2015
  • This paper describes a three-dimensional approach to modeling the nonlinear behavior of partial-depth precast prestressed concrete bridge decks under increasing static loading. Six full-size panels were analyzed with this approach where the damage plasticity constitutive model was used to model concrete. Numerical results were compared and validated with the experimental data and showed reasonable agreement. The discrepancy between numerical and experimental values of load capacities was within six while the discrepancy of mid-span displacement was within 10 %. Parametric study was also conducted to show that higher accuracy could be achieved with lower values of the viscosity parameter but with an increase in the calculation effort.

초음파를 이용한 마멸표면 평가 (Ultrasonic Evaluation of Worn Surface)

  • 안효석;김두인
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.233-239
    • /
    • 1999
  • The feasibility of an ultrasonic technique using a pulse-echo method of normal-incident compressional waves was evaluated for its sensitivity to the worn surface and near surface damage due to wear. Worn surfaces were generated at various oscillation frequency under a given load and amplitude and these surface were in situ monitored using a ultrasonic wave detection system. Analysis of the ultrasonic waves received from the worn surface revealed a close relationship between the surface and near-surface damage and the maximum echo-amplitude of the compressional waves. The ultrasonic technique was successful in assessing the level of severity of the worn surface in real time during the wear process. It is also shown that the wear depth can be easily measured by the calculation of change of the specimen thickness based on the wave speed measured for the specimen medium.

  • PDF

오스테나이트계 내식강 튜브 소재의 손상진단에 관한 연구 (A Study on Damage Evaluation Austenitic Stainless Steel Tube Material)

  • 조종춘;김영석;김학민;정형조
    • 한국기계연구소 소보
    • /
    • 통권19호
    • /
    • pp.43-52
    • /
    • 1989
  • Material damage of Unifiner Change Heater: Tube used for nearly 20 years was evaluated and Mechanical tests such as tensile tests and creep-rupture tests were conducted to predict the residual life. After the investigation, any major damage or degradation was not found except the welded zone. Microstructural observation showed that most of delta-ferrite was transformed. to sigma-phase and consequently, the ductility was very much reduced. A KLA(Knife-Line Attack) crack with 60mm in length and 2.8mm in depth was found just near the welded zone, which is believed to be caused by intergranular corrosion. Creep-rupture tests, which are very essential to predict the residual life, showed that both used base and weld metals have similar results with the reference data.

  • PDF

BK7의 평행축 연성모드 연삭가공 (Dutile Regime Parallel Grinding of BK7)

  • 이현성;김민재;구할본;황연;김혜정;김정호
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.85-89
    • /
    • 2012
  • Conventional grinding of BK7 glass will normally result in brittle fracture at the surface, generating severe sub-surface damage and poor surface finish. The precision grinding of BK7 glass in parallel grinding modes has been investigated. Grinding process, maximum chip thickness, ductile/brittle regime, surface roughness and sub-surface damage have been addressed. Special attention has been given to the condition for generating a ductile mode response on the ground surface. Experiments reveal that the level of surface roughness and depth of sub-surface damage vary differently for different condition. This study gives an indication of the strategy to follow to achieve high quality ground surfaces on brittle materials.

유한요소법을 이용한 철도 차륜에서 구름 접촉으로 인한 피로손상 평가 (Estimation of Fatigue Damage Due to Rolling Contact in a Railway Wheel Using FEM Analysis)

  • 이상훈;김호경
    • 한국안전학회지
    • /
    • 제26권3호
    • /
    • pp.1-7
    • /
    • 2011
  • Fatigue damage on the train wheel surface was estimated by considering the effect of friction coefficient of rolling on the contact surface between the wheel and rail during operation. From FEM analys, the maximum Tresca stress was 550.7 MPa at a depth of 2.07 mm under the maximum contact pressure ($P_{max}$ = 894.3 MPa) between wheel and rail. The maximum stress continued to increase along with the increase in the frictional coefficient. The fatigue initiation lifetime of the wheel by the rolling contact was predicted using the Smith-Watson-Topper (SWT) equation and the maximum principal strain equation (${\varepsilon}$-N).

초음파를 이용한 마멸표면 평가 (Ultrasonic Evaluation of Worn Surface)

  • 안효석;김두인
    • Tribology and Lubricants
    • /
    • 제16권5호
    • /
    • pp.351-356
    • /
    • 2000
  • The feasibility of an ultrasonic technique using a pulse-echo method of normal-incident compressional waves was evaluated for its sensitivity to the worn surface and near surface damage due to wear. Worn surfaces were generated at various oscillation frequency under a given load and amplitude and these surface were in situ monitored using a ultrasonic wave detection system. Analysis of the ultrasonic waves received from the worn surface revealed a close relationship between the surface and near-surface damage and the maximum echo-amplitude of the compressional waves. The ultrasonic technique was successful in assessing the level of severity of the worn surface in real time during the wear process. It is also shown that the wear depth can be easily measured by the calculation of change of the specimen thickness based on the wave speed measured for the specimen medium.