• Title/Summary/Keyword: Dam process

Search Result 293, Processing Time 0.029 seconds

Weighting assessment on evaluation indicators of dam rehabilitation using the AHP analysis (AHP분석을 통한 댐 재개발 평가항목 중요도 평가)

  • Choi, Ji-Hyeok;Kim, Jong-Suk;Kwon, Ji-Hye;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.381-389
    • /
    • 2016
  • In this study, we developed evaluation indicators of dam rehabilitation considering climate change in order to prepare for safety of aging dam facilities in accordance with changes in rainfall intensity. The validity and appropriateness of each indicator, and the evaluation criteria were selected for quantitative indicators for each detail through domestic and international case studies, literature review, and expert advice. The survey was carried out to estimate the importance of each indicator for dam rehabilitation. The subjective assessment of the respondents was rearranged using pairwise comparison from the Analytic Hierarchy Process (AHP). The reliability of the survey results was evaluated through consistent verification. In addition, a comparative assessment was carried out which evaluated the reliability importance estimation result to refine the criteria to distinguish rating scales between expert and non-expert groups on dam-related fields.

Future Climate Change Impact Assessment of Chungju Dam Inflow Considering Selection of GCMs and Downscaling Technique (GCM 및 상세화 기법 선정을 고려한 충주댐 유입량 기후변화 영향 평가)

  • Kim, Chul Gyum;Park, Jihoon;Cho, Jaepil
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • In this study, we evaluated the uncertainty in the process of selecting GCM and downscaling method for assessing the impact of climate change, and influence of user-centered climate change information on reproducibility of Chungju Dam inflow was analyzed. First, we selected the top 16 GCMs through the evaluation of spatio-temporal reproducibility of 29 raw GCMs using 30-year average of 10-day precipitation without any bias-correction. The climate extreme indices including annual total precipitation and annual maximum 1-day precipitation were selected as the relevant indices to the dam inflow. The Simple Quantile Mapping (SQM) downscaling method was selected through the evaluation of reproducibility of selected indices and spatial correlation among weather stations. SWAT simulation results for the past 30 years period by considering limitations in weather input showed the satisfactory results with monthly model efficiency of 0.92. The error in average dam inflow according to selection of GCMs and downscaling method showed the bests result when 16 GCMs selected raw GCM analysi were used. It was found that selection of downscaling method rather than selection of GCM is more is important in overall uncertainties. The average inflow for the future period increased in all RCP scenarios as time goes on from near-future to far-future periods. Also, it was predicted that the inflow volume will be higher in the RCP 8.5 scenario than in the RCP 4.5 scenario in all future periods. Maximum daily inflow, which is important for flood control, showed a high changing rate more than twice as much as the average inflow amount. It is also important to understand the seasonal fluctuation of the inflow for the dam management purpose. Both average inflow and maximum inflow showed a tendency to increase mainly in July and August during near-future period while average and maximum inflows increased through the whole period of months in both mid-future and far-future periods.

Simulation of Change in Physical Habitat of Fish Using the Mobile Bed Model in a Downstream River of Dam (댐 하류 하천에서 하상변동 모델을 이용한 어류 물리서식처 변화 모의)

  • Kim, Seung Ki;Choi, Sung-Uk
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.317-323
    • /
    • 2015
  • This study investigated the impact of the morphological change on a physical fish habitat in the downstream reach of a dam using long-term mobile bed simulation. The quasi-steady model was used for hydraulic simulation and the habitat suitability index model was applied for physical habitat simulation. For simulating long-term morphological change of the stream bed, The Exner equation was used. Sorting of bed material was also considered. The results of simulation showed that erosion and armoring process occurred in a reach downstream of the dam and change of physical habitat for Zacco platypus followed. These results indicate that channel morphology and substrate conditions effected the physical habitat for considering long-term investigation.

Characteristic behaviors of ozone decomposition and oxidation of pharmaceuticals during ozonation of surface waters in Ulsan (울산시 상수원수에서의 오존분해 특성 및 의약물질 분해 거동 연구)

  • Lee, Hye-Jin;Lee, Hongshin;Lee, Changha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.39-47
    • /
    • 2013
  • This study demonstrates the oxidative degradation of pharmaceutical compounds during ozonation of surface waters in Ulsan. Diclofenac, carbamazepine, bezafibrate, and ibuprofen were selected as surrogate pharmaceutical compounds, and ozonation experiments were performed using raw waters collected from the Sayeon Dam and the Hoeya Dam in Ulsan. Diclofenac and carbamazepine which have high reactivity with molecular ozone showed higher removal efficiencies than bezafibrate and ibuprofen during ozonation. The addition of tert-butanol, a hydroxyl radical scavenger, increased the removal efficiencies of diclofenac and carbamazepine by increasing the ozone exposure. However, the oxidation of bezafibrate and ibuprofen was inhibited by the presence of tert-butanol due to the suppression of the exposure to hydroxyl radical. The elimination of the selected pharmaceuticals could be successfully predicted by the kinetic model base on the $R_{ct}$ concept. Depending on the experimental condition, $R_{ct}$ values were determined to be $(1.54{\sim}3.32){\times}10^{-7}$ and $(1.19{\sim}3.04){\times}10^{-7}$ for the Sayeon Dam and the Hoeya Dam waters, respectively. Relatively high $R_{ct}$ values indicate that the conversion of $O_3$ into $^{\cdot}OH$ is more pronounced for surface waters in Ulsan compared to other water sources.

Numerical Simulation and Laboratory Experiment of Flooding on a Perpendicular Floodplain with Dam-Break Flows (댐 붕괴 흐름에 의한 직립 홍수터의 범람 실험 및 모의)

  • Hwang, Seung-Yong;Kim, Hyung Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • Numerical simulation with Hwang's scheme, which can analyze shallow-water flow over discontinuous topography, was compared with a laboratory experiment of flooding on a perpendicular floodplain with dam-break flows. The simulation results were in good agreement with the results measured in an experimental flume with a reservoir, channel, and floodplain. The wetting and drying process on a perpendicular floodplain with a dam-break flow was particularly well simulated. The difference in simulation results according to the type of flow resistance was insignificant. The results of this study are expected to improve the accuracy of predicting inundation in urban rivers.

Seepage Quantity Evaluation of a Fill Dam using 3D FEM Analysis (3차원 수치해석에 의한 필 댐의 누수량 평가)

  • Choi, Byoungil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.8
    • /
    • pp.45-49
    • /
    • 2015
  • Using 2D numerical analysis that covers the largest section of the dam body, a process is generally performed when evaluating its stability against seepage. The quantity of seepage is first obtained by assuming that its bottom topography is in the simple form of a rectangle, it is then calculated by reflecting its sectional shape during this process of analyzing the seepage quantity. Considering that various forms of dams are being constructed on various types of ground, thanks to more recent technological advances, it is judged more appropriate to draw a conclusion by means of the results on reflecting the realistic shape and topographical conditions of the dam body through 3D numerical analysis. Therefore, this study intends to present a method designed to carry out safety management by evaluating the correct quantity of water leakage that passes only through the dam body, having excluded other factors that include the amount of rainfall through the 3D FEM analysis.

An optimal policy for an infinite dam with exponential inputs of water (비의 양이 지수분포를 따르는 경우 무한 댐의 최적 방출정책 연구)

  • Kim, Myung-Hwa;Baek, Jee-Seon;Choi, Seung-Kyoung;Lee, Eui-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1089-1096
    • /
    • 2011
  • We consider an infinite dam with inputs formed by a compound Poisson process and adopt a $P^M_{\lambda}$-policy to control the level of water, where the water is released at rate M when the level of water exceeds threshold ${\lambda}$. We obtain interesting stationary properties of the level of water, when the amount of each input independently follows an exponential distribution. After assigning several managing costs to the dam, we derive the long-run average cost per unit time and show that there exist unique values of releasing rate M and threshold ${\lambda}$ which minimize the long-run average cost per unit time. Numerical results are also illustrated by using MATLAB.

The Application of Reducing Turbidity by use of Natural Zeolite in IMHA Dam (임하댐 탁수 저감을 위한 천연지오라이트 활용 실례)

  • Park Ki Ho;Bae Sang Keun;Jee Hong Ki;Park Kyoung Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1312-1316
    • /
    • 2005
  • Due to the Typhoon MAEMI on Sep. of 12 in 2003, the turbidity value of IMHA Dam was recorded more than 213NTU until now. The natural zeolite located in the east coast of Korean peninsula was applied to reduce turbidity with ion exchange Process. The result of this technique, the value of turbidity was reduced less than 1NTU. Also the value of pH showed stable state compare to before and after.

  • PDF

Study of Plans for a Residential Area for Displaced Villagers Considering Sustainability: A Case of Gyodong-village, Pocheon-si, Gyeonggi-do in Korea (지속가능성을 고려한 농촌마을 이주단지 조성계획 연구 -경기도 포천시 교동마을을 대상으로-)

  • Joo, Myoung-Gyu;Cho, Joong-Hyun
    • Journal of Korean Society of Rural Planning
    • /
    • v.18 no.3
    • /
    • pp.175-186
    • /
    • 2012
  • This is a study of a residential area for displaced villagers planned for residents of Gyodo Village who must evacuate their hometown because of flooding due to the Hantan River Dam Project. The study aims to construct a plan for a new residential area for the villagers focusing on reflecting the existing characteristics of their former village and on ensuring sustainability for the new village. Departing from previous practice of focusing on merely physical aspects when planning, the current study is significant in that it presents a new planning process and method for a sustainability-focused plan. While the study has many limitations such as objectivity in the process of deriving the sustainability indicators and the appropriateness of the indicator questions, it is hoped that future studies on sustainability will serve to make up for these limitations and problems.

Study on the direct approach to reinitialization in using level set method for simulating incompressible two-phase flows (비압축성 2 상유동의 모사를 위한 level set 방법에서의 reinitialization 직접 접근법에 관한 연구)

  • Cho, Myung-H.;Choi, Hyoung-G.;Yoo, Jung-Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.568-571
    • /
    • 2008
  • The computation of moving interface by the level set method typically requires reinitializations of level set function. An inaccurate estimation of level set function ${\phi}$ results in incorrect free-surface capturing and thus errors such as mass gain/loss. Therefore, accurate and robust reinitialization process is essential to the free-surface flows. In the present paper, we pursue further development of the reinitialization process, which evaluates directly level set function ${\phi}$ using a normal vector in the interface without solving the re-distancing equation of hyperbolic type. The Taylor-Galerkin approximation and P1P1splitting FEM are adopted to discretize advection equation of the level set function and the Navier-Stokes equation, respectively. Advection equation of free surface and re-initialization process are validated with benchmark problems, i.e., a broken dam flow and time-reversed single vortex flow. The simulation results are in good agreement with the existing results.

  • PDF