• 제목/요약/키워드: Dam inflow

Search Result 341, Processing Time 0.028 seconds

Predictive analysis of minimum inflow using synthetic inflow in reservoir management: a case study of Seomjingang Dam (자료 발생 기법을 활용한 저수지 최소유입량 예측 기법 개발 : 섬진강댐을 대상으로)

  • Lee, Chulhee;Lee, Seonmi;Lee, Eunkyung;Ji, Jungwon;Yoon, Jeongin;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.311-320
    • /
    • 2024
  • Climate change has been intensifying drought frequency and severity. Such prolonged droughts reduce reservoir levels, thereby exacerbating drought impacts. While previous studies have focused on optimizing reservoir operations using historical data to mitigate these impacts, their scope is limited to analyzing past events, highlighting the need for predictive methods for future droughts. This research introduces a novel approach for predicting minimum inflow at the Seomjingang dam which has experienced significant droughts. This study utilized the Stochastic Analysis Modeling and Simulation (SAMS) 2007 to generate inflow sequences for the same period of observed inflow. Then we simulate reservoir operations to assess firm yield and predict minimum inflow through synthetic inflow analysis. Minimum inflow is defined as the inflow where firm yield is less than 95% of the synthetic inflow in many sequences during periods matching observed inflow. The results for each case indicated the firm yield for the minimum inflow is on average 9.44 m3/s, approximately 1.07 m3/s lower than the observed inflow's firm yield of 10.51 m3/s. The minimum inflow estimation can inform reservoir operation standards, facilitate multi-reservoir system reviews, and assess supplementary capabilities. Estimating minimum inflow emerges as an effective strategy for enhancing water supply reliability and mitigating shortages.

A Study on Low-flow Frequency Analysis Using Dam Inflow (댐 유입량 자료를 이용한 갈수빈도해석에 대한 연구)

  • Jung, Younghun;Nam, Woo Sung;Shin, Hongjoon;Heo, Jun-Haeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.363-371
    • /
    • 2012
  • In this study, the low-flow frequency analysis was performed to determine the low-flow standard of dam maintenance flow for Hwacheon and Chuncheon dams. For this purpose, two methods (case 1: low-flow frequency analysis using the monthly inflow data of the specified return periods, case 2: low-flow frequency analysis using the difference of monthly accumulated inflow) were applied. As a result, it is found that the monthly inflow data of the return periods by reflecting the statistical characteristics of Hwacheon and Chuncheon dams can be utilized to determine the standard of maintenance flow or water level.

A Study on Daily Water Storage Simulation of the Daecheong Dam by Operation Scenario of the Yongdam Dam (용담댐 운영 시나리오에 따른 대청댐 저수량 변화에 관한 연구)

  • Noh Jaekyoung;Kim Hyun-hoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1403-1407
    • /
    • 2005
  • In order to analyze the water storage of the Daecheong dam after constructing the Yongdam dam situated in upstream, a daily cascaded simulation model for analyzing water storages in the Yongdam-Daecheong dams was developed. Operation scenarios of the Yongdam dam were selected to 8 cases with the combinations of downstream outflows and water supplies to the Jeonju region. Daily water storages in the Daecheong dam was analyzed daily by simulating from 1983 to 2004. The results are summarized as follows. Firstly, water supplies from the Daecheong dam were analyzed to amount $1,964.2Mm^3$ on a yearly average in case without the Yongdam dam. In case with the Yongdam dam, water supplies from the Daecheong dam were analyzed to amount $1,858.7\~1,927.3Mm^3$ in case with downstream outflow of $5\;m^3$ is, and were analyzed to amount $1,994.9\~2,017.8Mm^3$ in case with downstream outflow of $10\;m^3/s $. These values are compared to $1,649Mm^3$ applied in design. Secondly, reservoir use rate which was defined rate of water supply to effective water storage reached $241.3\% in case without the Yongdam dam. In case with the Yongdam dam, reservoir use rate reached $228.3\~236.8\% In case with downstream outflow of $5\;m^3/s$, and reached $245.1\~247.9\% in case with downstream outflow of $10\;m^3/s$. Thirdly, runoff rate which is defined rate of dam inflow to areal rainfall reached $57.3\% in case without the Yongdam dam. In case with the Yongdam dam, reservoir use rate reached $62.0\~68.4\% in case with downstream outflow of $5\;m^3/s$, and reached $64.1\~68.5\% in case with downstream outflow of $10\;m^3/s$. Fourth, in case with downstream outflow of $10\;m^3/s$ is from the Yongdam dam, appropriate water supply amounts to the Jeonju region were analyzed to only $0.50Mm^3/day$ from the daily simulation of water storages in the Yongdam dam. Comprehensively, water supply capacity of the Daecheong dam was analyzed to affect in small amounts in spite of the construction of the Yonsdam dam. It is effected to achieve the effective water management of the Yongdam dam and the Daecheong dam by using the developed cascaded model.

  • PDF

Development of Reservoir Operation Model using Simulation Technique in Flood Season (I) (모의기법에 의한 홍수기 저수지 운영 모형 개발 (I))

  • Sin, Yong-No;Maeng, Seung-Jin;Go, Ik-Hwan;Lee, Hwan-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.745-755
    • /
    • 2000
  • The dam operation system of KOWACO for flood control doesn't have capability to account for the downstream hydrologic conditions and any feasible index to decide the pre-release from the forecasted rainfall and inflow. In this study, a dam operation model for flood control was developed to account for the flood flow condition of its downstream to give users the dam release schedules. Application test of EV ROM to Keum River showed that EV ROM is superior to the Rigid ROM and Technical ROM which are currently used by KOWACO. EV ROM developed in this study provides a release schedule accounting for the cumulative lateral flow hydrograph at the downstream control points where the discharge does not depend only on the dam operation. but also on lateral inflow from the tributaries. In order to reduce the peak discharge at the control points, it suggests the preliminary release during the early rising phase of the predicted hydrograph, holding the flood flow inside the dam during a peak phase, and afterward resuming the release. Three case studies of flood control by the operation of Daechung Multipurpose Dam in Geum River Basin show that the EV ROM is superior to the Rigid ROM and Technical ROM. This must be due to its nature to account for the downstream flow condition as well as the inflow and water level of the dam. It was also conceived that further case studies of EV ROM and more accurate rainfall prediction would improve the dam operation for flood control.ontrol.

  • PDF

Identification of yearly variation in Hwacheon dam inflow using trend analysis and hydrological sensitivity method (경향성 분석과 수문학적 민감도 기법을 이용한 화천댐 유입량의 연별 변동량 규명)

  • Kim, Sang Ug;Lee, Cheol-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.425-438
    • /
    • 2018
  • Existing studies that analyze the causes and effects of water circulation use mostly rainfall - runoff models, which requires much effort in model development, calibration and verification. In this study, hydrological sensitivity analysis which can separate quantitatively the impacts by natural factors and anthropogenic factor was applied to the Hwacheon dam upper basin from 1967 to 2017. As a result of using various variable change point detection methods, 1999 was detected as a statistically significant change point. Especially, based on the hydrological sensitivity analysis using 5 Budyko based functions, it was estimated that the average inflow reduction amount by Imnam dam construction was $1.890\;billion\;m^3/year$. This results in this study was slightly larger than the those by existing researchers due to increase of rainfall and decrease of Hwacheon dam inflow. In future, it was suggested that effective water management measures were needed to resolve theses problems. Especially, it can be suggested that the monthly or seasonal analysis should be performed and also the prediction of discharge for future climate change should be considered to establish resonable measures.

Estimation of Maintenance Flow for Suitable Utilization of Fishway (어도의 적절한 이용을 위한 유지유량 평가)

  • Kim, Seok-gyu;Kim, Chul;Kim, Seonghwan;Ko, Kwangyong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.281-287
    • /
    • 2009
  • Achieved monitoring regularly about fishway that is a intake dam belongings to Kyeongchon for 5 years. Result that achieve monitoring, discovered pressing issue of opening and closing degree of discharge control part in fishway. In this research, analyze discharge relation with fishway and intake sluice and presented operation plan of opening and closing of discharge control part. Investigated necessity intake discharge and benefited area to analyze relation of discharge that is flowed in fishway and discharge escaping by intake sluice. When opened discharge control part step by step gradually, analyzed discharge. Compared with survey discharge making ration curve of fishway and intake sluice using orifice and submerged weir formula. Because operation of intake dam is necessary intake discharge and upriver inflow discharge by time, operation uses by survey discharge and calculated opening discharge of fishway by opening discharge of intake sluice via monthly inflow discharge. To sum up, calculated floodgate opening height of fishway by water level to present maintenance standard of intake dam.

Assessment of water resources by the construction of subsurface dam (지하댐 설치에 의한 수자원 개발량 평가)

  • Kim, Sang Jun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.795-802
    • /
    • 2017
  • This study shows the assessment methodology for the water resources of subsurface dams. The study area is SSangcheon subsurface dam. It is at the estuary of SSangcheon watershed forming the unconfined alluvial aquifer. there are several candidate area which are geologically similar to it at East coast. The groundwater level was computed by a 2-D FDM model, where the watershed discharge is the input as the infiltration term. The baseflow computed as the mean value of 3 watershed dischrge model is $0.5m^3/sec$. And considering the inflow near the baseflow as the dry season inflow, The groundwater level according to the change of inflow and pumping rate was computed. Specifically, Using the real pumping rate $28000m^3/day$ which is equal to the supply amount of drinking water to Sokcho city, The inflow which induce the descended groundwater level to the bottom of aquifer or the ascended groundwater level that cause the surface flow was eatimated. The simulation for increased pumping rate and additional well construction to increase the water resources, was executed. And at the extreme dry season, available pumping rate was estimated.