• Title/Summary/Keyword: Dam Stability

Search Result 193, Processing Time 0.027 seconds

Evaluation of dam strength by finite element analysis

  • Papaleontiou, Chryssis G.;Tassoulas, John L.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.457-471
    • /
    • 2012
  • Current code procedures for stress and stability analysis of new and existing concrete-gravity dams are primarily based on conventional methods of analysis. Such methods can be applied in a straightforward manner but there has been evidence that they may be inaccurate or, possibly, not conservative. This paper presents finite element modeling and analysis procedures and makes recommendations for local failure criteria at the dam-rock interface aimed at predicting more accurately the behavior of dams under hydraulic and anchoring loads.

Case of slope stability in weathered metamorphic rock (풍화된 변성암 사면의 안정대책 사례)

  • Kim, Jae-Hong;Park, Chal-Sook;Jeon, Je-Sung;Hong, Won-Pho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1400-1405
    • /
    • 2008
  • Execute surface of the earth geological survey for stability analysis of stealing cutting sides and investigated wide area nature of soil structure. Inflected DIPS that measure discontinuity's direction that develop to slope and is slope stability a wide use program for Stereographic Projection Method analysis that utilize geometrical correlation of stealing four sides and discontinuity surface. It is principle that angle of internal friction that is basis element of stability estimation applies direct shear test result on joint side, Examination is impossible by case execution, suppose by 30 angles that apply more conservatively in base rock slope sides usually and achieved analysis. When analyze, consider discontinuity's various adult that develop in research slope, after conduct first each discontinuity different assay falling into fault, joint, executed stability estimation which synthesize whole discontinuity data. When ailment element is recognized as analysis result, wished to present stability countermeasure way of most suitable to take into account of execution, stability, economic performance.

  • PDF

Numerical Study on Earthquake Performance of Gravity Dam Considering Earthquake Frequencies (지진진동수에 따른 콘크리트 중력댐의 내진성능에 대한 해석적 사례연구)

  • Chai, Young-Suk;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.64-74
    • /
    • 2016
  • Recently, the seismic stability evaluation of concrete gravity dams is raised due to the failure of dams occurred by the Izmit, Turkey and JiJi, Taiwan earthquake in 1999. Dams failure may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about "earthquake - resistance" or "seismic safety" of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic stability of concrete gravity dams on the basis of the evaluation method of seismic stability of concrete gravity dams in U.S.A., Japan, Canada, and etc. Level 1 is a preliminary evaluation which is for purpose of screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. And level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dams on operation showed good seismic performance under designed artificial earthquake(KHC earthquake).

Stability Analysis of Embankment Overtopping by Initial Fluctuating Water Level (초기 변동수위를 고려한 제방 월류에 따른 안정성 분석)

  • Kim, Jin-Young;Kim, Tae-Heon;Kim, You-Seong;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.51-62
    • /
    • 2015
  • It is not possible to provide resonable evidence for embankment (or dam) overtopping in geotechnical engineering, and conventional analysis by hydrologic design has not provided the evidence for the overflow. However, hydrologic design analysis using Copula function demonstrates the possibility that dam overflow occurs when estimating rainfall probability with rainfall data for 40 years based on fluctuating water level of a dam. Hydrologic dam risk analysis depends on complex hydrologic analyses in that probabilistic relationship needs to be established to quantify various uncertainties associated with modeling process and inputs. The systematic approaches to uncertainty analysis for hydrologic risk analysis have not been addressed yet. In this paper, the initial level of a dam for stability of a dam is generally determined by normal pool level or limiting the level of the flood, but overflow of probability and instability of a dam depend on the sensitivity analysis of the initial level of a dam. In order to estimate the initial level, Copula function and HEC-5 rainfall-runoff model are used to estimate posterior distributions of the model parameters. For geotechnical engineering, slope stability analysis was performed to investigate the difference between rapid drawdown and overtopping of a dam. As a result, the slope instability in overtopping of a dam was more dangerous than that of rapid drawdown condition.

Evaluation of Internal Settlement of Rockfill Dam under Construction (석괴댐의 축조 중 내부 침하 거동 평가)

  • Seo, Min-Woo;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.45-52
    • /
    • 2010
  • The purposes of this research are to analyze the internal settlement behavior of Concrete Faced Rockfill Dam (CFRD) typed 'D dam' and to evaluate the stability of the 'D dam' during dam construction using internal settlement measurements and results of numerical analysis. The field measurements were obtained during dam construction period. The numerical analysis was also carried out for the same construction period. The numerical analysis focused mainly on prediction of stress and displacement behavior of 'D dam' during dam construction stage using input parameters obtained from laboratory tests, i.e. large triaxial tests. The behavior of 'D dam' was evaluated to be stable from comparing the results of field measurements and numerical analysis. A simple empirical equation is also presented to predict final settlement at the completion of dam construction, using settlement measurement monitored during dam embankment.

The reason of cracking in bottom gallery of SefidRud Buttress Dam and earthquake and post earthquake performance

  • Mirzabozorg, Hasan;Ghaemian, Mohsen;Roohezamin, Amirhossein
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.103-124
    • /
    • 2019
  • Present study concerns the safety evaluation of SefidRud dam's block No. 18 regarding probable crack propagation in the foundation gallery under a MCE record. Accordingly, a 3D finite element model of the block in companion with the reservoir and the foundation is modeled. All the associated thermal and structural parameters are derived via calibration with the records of thermometers and pendulums installed inside the dam body. The origination of the cracks and their whereabouts are determined by primary thermal and static analyses and through a linear dynamic analysis the potential failure zone and their extent and level are studied. The foundation gallery is the most probable zone among the other intensive tensile stress area to compromise the dam stability. Therefore, the nonlinear analysis of this risky region is inevitable. The results depict the permissible expansion of the cracks inside the gallery even under another future earthquake in MCE level. As a consequence, the general dam performance is assessed safe in spite of the seepage flow rate growth from the gallery fractures.

Non-uniform wind environment in mountainous terrain and aerostatic stability of a bridge

  • Chen, Xingyu;Guo, Junjie;Tang, Haojun;Li, Yongle;Wang, Lei
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.649-662
    • /
    • 2020
  • The existence of a dam has potential effects on the surrounding wind environment especially when it is located in mountainous areas. In this situation, the long-span bridge over the reservoir can easily be exposed to non-uniform incoming flows, affecting its wind-resistance performance. This paper presents a study on the aerostatic stability of such a bridge. Wind tunnel tests were first carried out to investigate the wind environment above a mountainous reservoir. The results show that the angle of attack and the wind speed along the bridge axis show obvious non-uniform characteristics, which is related to the inflow direction. When winds come from the south where the river is winding, the angle of attack varies along the span direction significantly. The finite element model for the bridge was established using ANSYS software, and effects of non-uniform wind loads on the aerostatic stability were computed. Non-uniform angle of attack and wind speed are unfavorable to the aerostatic stability of the bridge, especially the former. When the combined action of non-uniform angle of attack and wind speed is considered, the critical wind speed of aerostatic instability is further reduced. Moreover, the aerostatic stability of the bridge is closely related to the dam height.

A Study on Optimization for Location and type of Dam Considering the Characteristic of Large Fault (대규모 단층특성을 고려한 최적 댐위치 및 형식 선정)

  • Kim, Han-Jung;Lyu, Young-Gwon;Kim, Young-Geun;Lim, Hee-Dae
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.227-242
    • /
    • 2012
  • Youngju multipurpose dam is planned to minimizing the damage by flood and obtaining the water for industrial use in Nakdong river region. Faults in rock mass have strong influences on the behaviors of dam structure. Thus, it is very important to analyse for the characteristics of fault rocks in dam design. However, due to the limitation of geotechnical investigation in design stages, engineers have to carry out the additional geological survey including directional boring to find the distribution of faults and the engineering properties of faults for stability of dam. Especially, the selection of location of dam and type of dam considering fault zone must be analyzed through various experimental and numerical analysis. In this study, various geological survey and field tests were carried out to analyse the characteristics of the large fault zone through the complex dam is designed in foundation region. Also, the distribution of structural geology, the shape of faults and the mechanical properties of fault rock were studied for the reasonable design of the location and type of dam for long-term stability of the complex dam.

Evaluation of the Seismic Stability of Fill Dam by Shaking Table Tests (진동대 시험을 통한 Fill Dam의 내진 안정성 평가)

  • Yoon, Won-Sub;Chae, Young-Su;Park, Myeon-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.81-92
    • /
    • 2011
  • In order to understand evaluation of the seismic stability of a fill dam, we made chambers of 1:100, 1:70, and 1:50 (the ratio of the miniature), considering the law of similarity based on drawings of three representative cross sections. And we measured an increase in acceleration, excess pore water pressure, and vertical/horizontal displacement after applying Hachinohe wave (long period), Ofunato wave (short period), and artificial wave, complying with the domestic standards, in order to evaluate the stability and interaction between the ground, the structure, and fluids based on the measurements. As a result, we could observe that displacement of the target cross section was relatively small compared to the allowed level of 30 cm, ensuring proper stability for an earthquake. Regarding the acceleration measurements, the increase rate was 20% for Hachinohe wave and Ofunato wave but 30% for the artificial wave. With respect to the excess pore water pressure, it was lower than 1 (which is the permissible ratio for liquefaction) ensuring proper stability as well.

Hydraulic Model Test for Bridge Stability Analysis at Downstream of Chun-Chon Dam (춘천(春川)댐 방류시(放流時) 교량(橋梁)의 안정성(安定性) 검토(檢討)를 위한 수리모형실험(水理模型實驗) 연구(硏究))

  • Choi, Han-Kyu;Beak, Hyo-Seon;Choi, Sang-Soon
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.117-122
    • /
    • 2004
  • In The case of the bridge which is located in the downstream of the dam, effect of the running water and stability of the bridge is studing by using the Hydraulic model test. 1. The water level change of 'Seosang1 bridge' along Chunchon dam spill occurred through this experiment more greatly than a numerical conspiracy. 2. Bight is the spot where a difference occurs in located bridge piers(p18-p28) greatly, and an influence of Chunchon dam occurs in greatly.

  • PDF