• Title/Summary/Keyword: Dam Discharge

Search Result 401, Processing Time 0.025 seconds

Dam Inflow Evaluation using Hydrograph Analysis (수문곡선 분리를 통한 댐 유입량 평가)

  • Jung, Younghun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.95-105
    • /
    • 2018
  • Understanding the composition of the dam inflow can improve the efficiency of dam operation considering the seasonal characteristics. Hydrograph analysis is one of the methods to identify the characteristics of dam inflow. In addition, baseflow separation on the dam inflow can be affected by anthropogenic influences depending on dam locations. In this regard, the objectives of this study are 1) to analyze yearly and monthly baseflow contribution to the dam inflow and 2) to compare the baseflow contribution to the inflow in dams located upstream and downstream of the watershed. The result shows that the estimated baseflow index was smaller in the upstream dams compared to the downstream dams. Discharge from the upstream water infrastructure including dams and reservoirs can be a part of inflow into the downstream water infrastructure. Based on this scenario, the discharge regulated from the upstream dam could lead to overestimation of baseflow contribution to inflow into the downstream dam. We expect that the results from this study elucidate the role and function of dams and hence, contribute to the efficient operation of dams located in the upstream and the downstream of the watershed.

ESTIMATION OF DAM DISCHARGE FOR THE DOWN STREAM WATER QUALITY

  • Ha, Jin-Kyu;Hong, Il-Pyo
    • Water for future
    • /
    • v.35 no.5
    • /
    • pp.51-59
    • /
    • 2002
  • In recent years the human impact on the environment becomes increasing lift threatening, calls for the better management of resources. In field of water quality of river flow, the best way to conserve water quality is specific efforts to control the pollutant loadings and treat the loadings in the basin to reduce the discharge of pollutant loadings to river. But in general the water quality influenced by the dam discharge. Especially in dry season, it is more dominant way to improve the water quality which contaminated with the pollutant loadings from the basin. The dam discharge amounts of the 2 dams in the Keum River that maintain the down stream water quality were estimated for the year of 1999, 2001, 2006, 2011, in case of irrigation and non-irrigation seasons. The pollutant loadings for the basin are estimated with the planning of treatment plants construction schedule for every sub-basins. The river flow rates were considered low flow as 2.33 year low flow and 10 year low flow. The QUAL2E model was used as a tool of simulation.

  • PDF

Long-term Sediment Discharge Analysis in Yongdam Dam Watershed due to Climate Change

  • Felix, Micah Lourdes;Kim, Joocheol;Choi, Mikyoung;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.327-327
    • /
    • 2020
  • Increase in Earth's surface temperature, higher rainfall intensity rate, and rapid changes in land cover are just some of the most evident effects of climate change. Flooding, and river sedimentation are two inevitable natural processes in our environment, and both issues poses great risks in the dam industry when not addressed properly. River sedimentation is a significant issue that causes reservoir deposition, and thus causes the dam to gradually lose its ability to store water. In this study, the long-term effects of climate change on the sediment discharge in Yongdam Dam watershed is analyzed through the utilization of SWAT, a semi-distributed watershed model. Based from the results of this study, an abrupt increase on the annual sediment inflow trend in Yongdam Dam watershed was observed; which may suggests that due to the effects of climate change, higher rainfall intensity, land use and land cover changes, the sedimentation rate also increased. An efficient sedimentation management should consider the increasing trend in sedimentation rate due to the effects of climate change.

  • PDF

Evaluation of the Applicability of a Distributed Model at the Downstream of Dam (댐 하류 지점에 대한 분포형 모형의 적용성 평가)

  • Choi, Yun-Seok;Kim, Kyung-Tak;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.703-713
    • /
    • 2009
  • Dam has very important roles in both water use and flood control. Dam release and runoff from rainfall affect directly to the flood control at the downstream of dam during heavy storm especially. This study evaluates the applicability of a distributed model by applying the GRM (Grid based Rainfall-runoff Model) based on HyGIS (Hydro Geographic Information System) environment to runoff modeling at the downstream of dam where the discharge from dam and rainfall affect simultaneously. In order to do this, Yeoju watershed in Han River basin is selected. Rainfall data and discharge from Chungju regulation dam and Hoengseong dam are applied to runoff simulation. The modeling results are verified with Yeoju water level station, and they show good agreement with observed hydrographs. And this study shows that GRM is able to simulate appropriately the effect of dam discharge and rainfall on watershed runoff.

Evaluating stability of dam foundations by borehole and surface survey using Step Frequency Radar

  • Jha Prakash C.;Balasubramaniam V. R.;Nelliat Sandeep;Sivaram Y. V.;Gupta R. N.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.328-334
    • /
    • 2003
  • Evaluating stability of dam foundations is one of the prime areas of any rock engineering investigations. Despite best engineering efforts in the design and construction of dam foundations, the foundation regime of a constructed dam suffers deterioration due to continuous erosion from backwater current of dam discharge and dynamic effects of loading and unloading process. Even during construction, development of frequent cracks due to sudden thermal cooling of concrete blocks is not uncommon. This paper presents two case studies from India and Bhutan. In the first case, the back current of water discharge from the Srisailam dam in India had continuously eroded the apron and has eaten into the dam foundation. In the second case with dam construction at Tala Hydroelectric Project in Bhutan, sudden overflow of river during the construction stage of dam had led to development of three major cracks across the dam blocks. This was ascribed to adiabatic cooling effect of concrete blocks overlain by chilled water flow. Non-destructive evaluation of rock mass condition in the defect regime by the borehole GPR survey helped in arriving at the crux so as to formulate appropriate restoration plan.

  • PDF

Eutrophication of Nakdong River and Statistical Analtsis of Envitonmental Factors (낙동강 부영양화와 수질환경요인의 통계적 분석)

  • Kim, Mi-Suk;Chung, Young-Ryun;Suh, Euy-Hoon;Song, Won-Sup
    • ALGAE
    • /
    • v.17 no.2
    • /
    • pp.105-115
    • /
    • 2002
  • Influences of vrious environmental factors on the eutrophication of Nakdong River were analyzed statistically using water samples collected from 1 January, 1999, to 30 September, 2001 at Namji area. The relationships between the concentration of chlorophyll α (eutrophication index) and environmental factors and were analyzed to develop a statistical model which can predict the status of eutrophication. The concentation of chlorophyll α ranged from 66.2 mg · $m^{-3}$ to 70.8 mg · $m^{-3}$ during dry winter season and the average concentration during this study period was 35.5 mg · $m^{-3}$ Namji area of Nakdong River was in the hypereutrohic stage in terms of water quality. Stephanodiscus sp. and Aulacoseria granulata var. angustissima were dominant species during the witnter to spring time and summer to autumn period, respectively. Based on the correlation analysis and the analysis of variance between chlorophyll α concentration and environmental factors, significantly high positive relationships were found in the order of BOD> pH> COD > KMnO₄ consumption > DO > conductivity > alkalinity. In contrast to these factors, significantly negrative relationships were found as in the order of $PO₄^{3-}-P$ >water level>the rate of Namgang-dam discharge > NH₃-N> the rate of Andong-dam discharge> the rate of Hapchoen-dam discharge. Based on the factors analysis of environmental factors on the concentration of chlorophyll α, we obtained five factors as follows. The first factor included water level, pH, turbiditiy, conductivity, alkalinity and the rate of Namgang-dam discharge. The second factor included water temperature DO, NH₄+-N, NO₃- -N. The third factor included KMnO₄ consumption COD and BOD. The fourth factor included the rate of Andong-dam discharge, the rate of Hapcheon-dam discharge, and the rate of Imha-dam discharge. The final factor included T-N T-P and $PO₄^{3-}-P$ > concentration. We derived two statistica models that can predict the occurrence of eutrophication based on the factors by factor analysis, using regression analysis. The first model is the stepwise regression model whose independent variables are the factors produced by factor analysis : chl α (mg · $m^{-3}$ = 42.923+(18.637 factor 3) + (-17.147 factor 1) + (-12.095 factor 5) + (-4.828 factor 4). The second model is the alternative stepwise regression model whose independent variables are the sums of the standardized main component variables:chl α (mg · $m^{-3}$ = 37.295+(7.326 Zfactor 3) + (-2.704 Zfactor 1)+(-2.341 Zfactor 5).

Water Quality Modelling of Daechung Lake - Effect of Yongdam Dam (용담댐의 영향분석을 위한 대청호 수질모델링)

  • Seo, Dong-Il;Lee, Eun-Hyoung
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.737-751
    • /
    • 2002
  • Water quality in Daechung Lake was predicted for various discharge conditions of Yongdam dam. The same scenarios were applied as in the previous paper by the authors for Keum River water quality modeling. Effects in water quality due to changes in discharge conditions from Yongdam Dam were less distinct to the Daechung Lake than to the inflowing Keum River due to sink processes in the lake. For the minimum flow year, it is appropriate to maintain Yongdam dam discharge rate to 8.9 $m^3$/sec considering the current field conditions and future predictions of TN and TP concentrations of Yongdam dam. Effect of Yongdam dam discharge conditions to the Daechung Lake water quality were stronger for drier years. However it should be noted that the effects were dependent upon the water quality of Yongdam discharge at the same time. Therefore, water quality management effort should be emphasized before the discussion over the discharge volume of Yongdam dam. The input data sets for simulations in this study were formulated using the available data and assumptions based on authors experiences for the fields. Therefore, continued data collection effort will ensure the validity of this study.

Sediment Estimation of Large Reservoir Using Daily Flowrate Analysis (일유량 분석을 이용한 대규모 저수지의 퇴사량 추정)

  • 정재성
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.417-423
    • /
    • 1997
  • The objective of this study Is to supply basic data for large reservoir sedimentation research In future and make suggestions to maintain and opera능 the reservoir more of efficiently. At first, previous studios about the estimation of sediment yield rate were reviewed in Korea. And the discharge rating curves of upstream stage gauging stations and the correlation between dam Inflow and stage discharge were analyzed. With the analysis results, the spec유c sediment rate of Soyanggang dam was estimated as 608 m3/km2/yr. It was similar to that of Soyanggang dam feasibility study and 1994's field surveys of the reservoir than that of 1983's field surveys. Because the sediment rating curves were derived under the low discharge conditions, It needs to be checked under the flood conditions. However, the suggested methods such as flowrate analysis and sediment estimation will be useful to the sediment studios In future. Key words . reservoir sediment, sediment yield rate, rating curve, flowrate analysis.

  • PDF

Assessment of Flood Impact on Downstream of Reservoir Group at Hwangryong River Watershed (황룡강 유역 저수지군 하류하천 영향평가)

  • Hwang, Soon-Ho;Kang, Moon-Seong;Kim, Ji-Hye;Song, Jung-Hun;Jun, Sang-Min;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.103-111
    • /
    • 2012
  • Works for dam heightening plan have dual purposes: flood disaster prevention by securing additional storage volume and river ecosystem conservation by supplying stream maintenance flow. Now, the dam heightening project is in progress and there are 93 dam heightened reservoir. After the dam heightening project, 2.2 hundred million ton of flood control volume in reservoirs will be secured. Thus it is necessary to evaluate the effects of the dam heightening project on watershed hydrology and stream hydraulics, and resulting flood damages. This study was aimed to assess the impact of outflow from the dam heightened reservoir group on the Whangryong river design flood. The HEC-HMS (Hydrologic Engineering Center-Hydrologic Modeling System) model was used for estimating flood discharge, while HEC-5 (Hydrologic Engineering Center-5) was used for reservoir routing. This study analysed flood reduction effect on 100yr and 200yr return periods about the before and after heightening of agricultural dams. Based on the results of this study, the reduction of flood peak discharge at downstream of the reservoir group was estimated to be about 41% and 53% for 100yr and 200yr frequencies, respectively.

The Analysis of Potential Discharge by Dam in Han River Basin at Dry Season (한강 팔당하류의 갈수 시 댐 용수공급 가능유하량 분석)

  • Kim, Young-Kyu;Choi, Gye-Woon;Ham, Myeong-Soo;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.11
    • /
    • pp.1143-1152
    • /
    • 2008
  • Korea is located in a monson area, so that 2/3 of precipitation is fallen down in rainy season and dry season has few rainfall. Also, water quality gets worse during dry season by shortage of water. In this paper, the method, which is a physical way to improve water quality by dilution through over supplied water from big reservoir or dam, is analyzed at Han-river basin. For the sake of the analysis, the basin is divided in 33 catchments and each catchments' natural flow is simulated by SWAT-K and the future water demand is estimated by using statistics data. It is considered that Han-river basin has two big reservoirs(Chung-ju dam, So-yang gang dam) and potential discharge by dam is calculated through case of supply water from each dam and supply water from both dams.