• 제목/요약/키워드: Dam

검색결과 4,258건 처리시간 0.244초

유연한 댐체와 압축성 유체의 상호작용을 고려한 댐-호소 시스템의 지진 응답해석 (Seismic Response Analysis of Dam-Reservoir System Considering the Interaction between the Flexible Dam and the Compressible Impounded Water)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.132-132
    • /
    • 1997
  • The influence of the dam-reservoir interaction on the seismic response of concrete dam is studied. The dam body is assumed to behave elastically and modeled by FEM. The impounded water is assumed to be inviscid and compressible fluid and modeled by BEM. The seismic response of dam-reservoir system is analyzed by coupling two regions : the dam body and reservoir.

  • PDF

콘크리트 표면차수벽형 석괴댐(CFRD)의 거동해석 (A Case Study on Deformation Characteristics of Concrete Face Rockfill Dam)

  • 김훈;정규정;이왕곤;장중렬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.111-116
    • /
    • 2003
  • Instrumentation system in Concrete Face Rockfill Dam(CFRD) can give special attention to the deformation characteristics of the rockfill and behavior of the concrete membrane during construction, reservoir filling and subsequent phase of operation. It also contains data about vertical and transversal compressibility moduli of the rockfill, deflections in the concrete slab, and draws comparisons with other concrete face rockfill dams of recent construction. In this paper, the internal deformation data from D dam monitored by means of hydrostatic settlements cells are analyzed. Observations cover the construction stage, reservoir filling and up to March 1991. The above method can be concluded D dam was well constructed and maintained.

  • PDF

콘크리트표면차수벽형 사력댐(CFGD)의 적용성 고찰 (Suitability of Concrete Faced Gravelfill Dam(CFGD))

  • 김범주;임은상;임정열;박한규;임희대
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.818-823
    • /
    • 2006
  • In this study, the suitability of CFGD(concrete faced gravefill dam) was investigated by examining the strength and deformation characteristics of a gravelfill material, a CFGD main fill material, and comparing them with those of several rockfill dam materials. The gravelfill material exhibited similar strength and deformation properties to those of the main fill materials of existing stable large rockfill dams. Since not only CFGD has environmental and economic advantages over CFRD, but its main fill material compares favorably with those of the existing stable CFRDs, CFGD may be the best choice when natural gravel materials are abundant in the vicinity of the dam construction location.

  • PDF

댐 및 제방의 기술 및 연구 현황 (An Overview on Technology and Research of Dam and Levee in Korea)

  • 신동훈;김재홍
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.319-334
    • /
    • 2009
  • This paper describes an overview of technology and research of dam and levee in Korea. In order to trace the development of dam and levee construction technology, history of design and construction of them is briefly reviewed, and their statistics including type, number and purpose of those hydraulic structures in Korea are dealt with. Furthermore, current status of research on the mentioned structures is also reviewed based on the papers published in Korean societies such as Korean Society of Civil Engineers and Korean Geotechnical Society. Finally state-of-the-art equipment and technology to investigate the safety conditions, and hence to enhance or rehabilitate their stability and dam and levee systems, respectively, are introduced here.

  • PDF

수문곡선 분리를 통한 댐 유입량 평가 (Dam Inflow Evaluation using Hydrograph Analysis)

  • 정영훈
    • 한국농공학회논문집
    • /
    • 제60권3호
    • /
    • pp.95-105
    • /
    • 2018
  • Understanding the composition of the dam inflow can improve the efficiency of dam operation considering the seasonal characteristics. Hydrograph analysis is one of the methods to identify the characteristics of dam inflow. In addition, baseflow separation on the dam inflow can be affected by anthropogenic influences depending on dam locations. In this regard, the objectives of this study are 1) to analyze yearly and monthly baseflow contribution to the dam inflow and 2) to compare the baseflow contribution to the inflow in dams located upstream and downstream of the watershed. The result shows that the estimated baseflow index was smaller in the upstream dams compared to the downstream dams. Discharge from the upstream water infrastructure including dams and reservoirs can be a part of inflow into the downstream water infrastructure. Based on this scenario, the discharge regulated from the upstream dam could lead to overestimation of baseflow contribution to inflow into the downstream dam. We expect that the results from this study elucidate the role and function of dams and hence, contribute to the efficient operation of dams located in the upstream and the downstream of the watershed.

Near-fault ground motion effects on the nonlinear response of dam-reservoir-foundation systems

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Sevim, Baris;Kartal, Murat Emre;Turker, Temel
    • Structural Engineering and Mechanics
    • /
    • 제28권4호
    • /
    • pp.411-442
    • /
    • 2008
  • Ground motions in near source region of large crustal earthquakes are significantly affected by rupture directivity and tectonic fling. These effects are the strongest at longer periods and they can have a significant impact on Engineering Structures. In this paper, it is aimed to determine near-fault ground motion effects on the nonlinear response of dams including dam-reservoir-foundation interaction. Four different types of dam, which are gravity, arch, concrete faced rockfill and clay core rockfill dams, are selected to investigate the near-fault ground motion effects on dam responses. The behavior of reservoir is taken into account by using Lagrangian approach. Strong ground motion records of Duzce (1999), Northridge (1994) and Erzincan (1992) earthquakes are selected for the analyses. Displacements, maximum and minimum principal stresses are determined by using the finite element method. The displacements and principal stresses obtained from the four different dam types subjected to these nearfault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts on the dam types.

낙동강 상류 유역별 서식 어류의 중금속 특성 (Heavy Metal Characteristics of Fish in Watersheds of the Upper Region of the Nakdong River)

  • 권희원;김영훈;김정진
    • 한국환경과학회지
    • /
    • 제31권2호
    • /
    • pp.103-116
    • /
    • 2022
  • Heavy metal contaminations were investigated in fishes inhabiting the basins of Andong, Imha and Yeongju dam basins along the upper stream of the Nakdong river. The characteristics of heavy metals contamination in fish were investigated based on sampling sites located in the Andong dam basin. The muscle tissue was analyzed for 267 objects of 26 species from the Andong dam, 50 objects of 17 species from Imha dam, 38 objects of 9 species fromYoungju dam basin.The type and amount of heavy metals concentrated in the body of the fishes was found to be species-dependent. The heavy metal species which contamination increase through the Seokpo smelter are chromium, zinc, cadmium, and lead, and these are very likely the influence of the smelter. The concentration of eight heavy metals in fish from the Andong dam basin was higher than that in fish from the Imha and Youngju dam basins; the values for zinc, arsenic, and cadmium were significantly higher. However, mercury and lead exhibited high values in the Imha and Yeongju dam basins, respectively.

Deformation and stress behavior analysis of high concrete dam under the effect of reservoir basin deformation

  • Zheng, Dongjian;Xu, Yanxin;Yang, Meng;Gu, Hao;Su, Huaizhi;Cui, Xinbo;Zhao, Erfeng
    • Computers and Concrete
    • /
    • 제18권6호
    • /
    • pp.1153-1173
    • /
    • 2016
  • According to deformation data measured in some high concrete dams, for dam body deformation, there is a complex relationship with dam height and water head for different projects, instead of a simple monotonic relationship consistently. Meanwhile, settlement data of some large reservoirs exhibit a significant deformation of reservoir basin. As water conservancy project with high concrete dam and large storage capacity increase rapidly these decades, reservoir basin deformation problem has gradually gained engineers' attentions. In this paper, based on conventional analytical method, an improved analytical method for high concrete dam is proposed including the effect of reservoir basin deformation. Though establishing FEM models of two different scales covering reservoir basin and near dam area respectively, influence of reservoir basin on dam body is simulated. Then, forward and inverse analyses of concrete dam are separately conducted with conventional and proposed analytical methods. And the influence of reservoir basin deformation on dam working behavior is evaluated. The results of two typical projects demonstrate that reservoir basin deformation will affect dam deformation and stress to a certain extent. And for project with large and centralized water capacity ahead of dam site, the effect is more significant than those with a slim-type reservoir. As a result, influence of reservoir basin should be taken into consideration with conducting analysis of high concrete dam with large storage capacity.

복합댐 접합부의 안정성 평가 (The Evaluation for Stability at Joint Part in Composition Dam)

  • 김재홍;오병현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권3호
    • /
    • pp.155-166
    • /
    • 2008
  • 연구대상댐의 우안부는 콘크리트구조물로 축조된 콘크리트 중력식댐으로 이루어져 있고, 좌안부는 사력재료로 이루어진 사력댐으로 구성되어 있는 복합댐이다. 이련 형식의 댐 거동에 대한 연구에 있어서 국내는 물론 선진외국의 참고자료도 희소한 실정이다. 국내의 경우 약 17,000의 저수시설물중 복합댐 형식은 지자체나 기타 기관에서 관리하는 생 공 용수댐의 경우 거의 존재하지 않으며, 설혹 존재하더라도 시설물의 관리자료가 전무한 실정으로, 국내 다목적댐 중 유일한 복합댐을 선정하여 중력식댐과 사력댐 접합부의 거동특성을 분석하였다. 본 연구에서는 해석적 방법에 의하여 복합댐의 동적 상호거동특성을 분석하기 위하여 댐 축을 기준으로 모델링하여 정적(유사정적법, 수정진도법) 및 동적해석을 수행하여, 지진시 콘크리트댐과 사력댐 접합부의 지진 응답해석을 분석하였다.

댐의 안전성 평가를 위한 위험도 해석기법의 적용 (Application of Risk Analysis for Dam Safety Assessment)

  • 이종석
    • 한국수자원학회논문집
    • /
    • 제35권6호
    • /
    • pp.651-664
    • /
    • 2002
  • 댐 안전성 평가의 주된 목적은 댐이 지니고 있는 잠재된 위험성을 미리 예측하고, 합리적인 방법으로 밝혀진 위험성을 줄여나가는 것이다. 본 연구에서는 위험도 해석기법을 이용하여 댐의 붕괴를 가져올 수 있는 각 상황별 댐의 위험성을 결정하였다. 또한, 댐의 위험성을 줄이기 위해 제시된 대안들에 대해서도 댐의 붕괴 위험성뿐 아니라 경제적인 측면에서의 비교, 평가를 실시하였다. 위험도 해석기법의 적용을 통해 댐의 안전을 책임지고 있는 관계자들은 댐의 위험성에 대한 구체적인 정보와 댐의 위험성을 개선할 수 있는 다양한 대안들에 대한 보다 넓은 이해를 가질 수 있다. 또한, 댐 정책 결정자들은 이러한 댐의 위험성에 대한 정보와 이해를 바탕으로 댐의 위험성을 효과적으로 줄여나갈 수 있는 대안들에 대해 자금과 자원을 집중하여 댐의 위험성을 효율적으로 관리할 수 있을 것으로 기대된다.