• Title/Summary/Keyword: Daily load forecasting

Search Result 52, Processing Time 0.027 seconds

Power Demand Forecasting in the DC Urban Railway Substation (직류 도시철도 변전소 수요전력 예측)

  • Kim, Han-Su;Kwon, Oh-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1608-1614
    • /
    • 2014
  • Power demand forecasting is an important factor of the peak management. This paper deals with the 15 minutes ahead load forecasting problem in a DC urban railway system. Since supplied power lines to trains are connected with parallel, the load characteristics are too complex and highly non-linear. The main idea of the proposed method for the 15 minutes ahead prediction is to use the daily load similarity accounting for the load nonlinearity. An Euclidean norm with weighted factors including loads of the neighbor substation is used for the similar load selection. The prediction value is determinated by the sum of the similar load and the correction value. The correction has applied the neural network model. The feasibility of the proposed method is exemplified through some simulations applied to the actual load data of Incheon subway system.

Short-Term Load Forecasting using Multiple Time-Series Model (다변수 시계열 분석에 의한 단기부하예측)

  • Lee, Kyung-Hun;Lee, Yun-Ho;Kim, Jin-O;Lee, Hyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.230-232
    • /
    • 2001
  • This paper presents a model for short-term load forecasting using multiple time-series. We made one-hour ahead load forecasting without classifying load data according to daily load patterns(e.g. weekday. weekend and holiday) To verify its effectiveness. the results are compared with those of neuro-fuzzy forecasting model(5). The results show that the proposed model has more accurate estimate in forecasting.

  • PDF

A short-term Load Forecasting Using Chaotic Time Series (Chaos특성을 이용한 단기부하예측)

  • Choi, Jae-Gyun;Park, Jong-Keun;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.835-837
    • /
    • 1996
  • In this paper, a method for the daily maximum load forecasting which uses a chaotic time series in power system and artificial neural network(Back-propagation) is proposed. We find the characteristics of chaos in power load curve and then determine a optimal embedding dimension and delay time. For the load forecast of one day ahead daily maximum power, we use the time series load data obtained in previous year. By using of embedding dimension and delay time, we construct a strange attractor in pseudo phase plane and the artificial neural network model trained with the attractor mentioned above. The one day ahead forecast errors are about 1.4% for absolute percentage average error.

  • PDF

Daily Load Forecasting Including Special Days Using Hourly Relative factors (시간대별 상대계수를 이용한 특수일이 포함된 평일의 전력수요예측)

  • Ahn, Dae-Hoon;Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.94-102
    • /
    • 2005
  • This paper performs analysis the load patterns for the all the special days and studies the change of the load patterns for the last 15 years using Expert system based on the load record and the weather condition record. The Expert system is one of the four major load forecasting methods of the power system And it is used for forecasting. loads of the special days based on the Know-how of the load forecasting Experts. After the author simulates the load forecasting using hourly relative factors of the load patterns based on the past load records, there is considerable improved effect. The average errors of past 5 days load forecasting of lunar New Year's Day (year 2002 and 2003) is $3.23{[\%]}$. Using the new method the author forecast loads of the lunar new year's days (the year 2005) and it shows only $1.78{[\%]}$ error. A field manual for the load forecast can be made using proposed method. The authors expect this article could give a guidance to those who wish to be load forecast expert.

Daily Peak Load Forecasting for Electricity Demand by Time series Models (시계열 모형을 이용한 일별 최대 전력 수요 예측 연구)

  • Lee, Jeong-Soon;Sohn, H.G.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.349-360
    • /
    • 2013
  • Forecasting the daily peak load for electricity demand is an important issue for future power plants and power management. We first introduce several time series models to predict the peak load for electricity demand and then compare the performance of models under the RMSE(root mean squared error) and MAPE(mean absolute percentage error) criteria.

Industrial load forecasting using the fuzzy clustering and wavelet transform analysis

  • Yu, In-Keun
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.233-240
    • /
    • 2000
  • This paper presents fuzzy clustering and wavelet transform analysis based technique for the industrial hourly load forecasting fur the purpose of peak demand control. Firstly, one year of historical load data were sorted and clustered into several groups using fuzzy clustering and then wavelet transform is adopted using the Biorthogonal mother wavelet in order to forecast the peak load of one hour ahead. The 5-level decomposition of the daily industrial load curve is implemented to consider the weather sensitive component of loads effectively. The wavelet coefficients associated with certain frequency and time localization is adjusted using the conventional multiple regression method and the components are reconstructed to predict the final loads through a five-scale synthesis technique. The outcome of the study clearly indicates that the proposed composite model of fuzzy clustering and wavelet transform approach can be used as an attractive and effective means for the industrial hourly peak load forecasting.

  • PDF

A Scheme for Reducing Load Forecast Error During Weekends Near Typhoon Hit (태풍 발생 인접 주말의 수요예측 오차 감소 방안)

  • Park, Jeong-Do;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1700-1705
    • /
    • 2009
  • In general, short term load forecasting is based on the periodical load pattern during a day or a week. Therefore, the conventional methods do not expose stable performance to every day during a year. Especially for anomalous weather conditions such as typhoons, the methods have a tendency to show the conspicuous accuracy deterioration. Furthermore, the tendency raises the reliability and stability problems of the conventional load forecast. In this study, a new load forecasting method is proposed in order to increase the accuracy of the forecast result in case of anomalous weather conditions such as typhoons. For irregular weather conditions, the sensitivity between temperature and daily load is used to improve the accuracy of the load forecast. The proposed method was tested with the actual load profiles during 14 years, which shows that the suggested scheme considerably improves the accuracy of the load forecast results.

The Study on Cooling Load Forecast of an Unit Building using Neural Networks

  • Shin, Kwan-Woo;Lee, Youn-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.170-177
    • /
    • 2003
  • The electric power load during the summer peak time is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. The method of forecasting the cooling load using neural network is also suggested. The daily cooling load is mainly dependent on actual temperature and humidity of the day. The simulation is started with forecasting the temperature and humidity of the following day from the past data. The cooling load is then simulated by using the forecasted temperature and humidity data obtained from the simulation. It was observed that the forecasted data were closely approached to the actual data.

Short-term Forecasting of Power Demand based on AREA (AREA 활용 전력수요 단기 예측)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.

A novel Kohonen neural network and wavelet transform based approach to Industrial load forecasting for peak demand control (최대수요관리를 위한 코호넨 신경회로망과 웨이브릿 변환을 이용한 산업체 부하예측)

  • Kim, Chang-Il;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.301-303
    • /
    • 2000
  • This paper presents Kohonen neural network and wavelet transform analysis based technique for industrial peak load forecasting for the purpose of peak demand control. Firstly, one year of historical load data were sorted and clustered into several groups using Kohonen neural network and then wavelet transforms are adopted using the Biorthogonal mother wavelet in order to forecast the peak load of one hour ahead. The 5-level decomposition of the daily industrial load curve is implemented to consider the weather sensitive component of loads effectively. The wavelet coefficients associated with certain frequency and time localization is adjusted using the conventional multiple regression method and the components are reconstructed to predict the final loads through a six-scale synthesis technique.

  • PDF