• Title/Summary/Keyword: Daily load forecasting

검색결과 52건 처리시간 0.021초

추석 연휴 전력수요 특성 분석을 통한 단기전력 수요예측 기법 개발 (Development of Short-Term Load Forecasting Method by Analysis of Load Characteristics during Chuseok Holiday)

  • 권오성;송경빈
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2215-2220
    • /
    • 2011
  • The accurate short-term load forecasting is essential for the efficient power system operation and the system marginal price decision of the electricity market. So far, errors of load forecasting for Chuseok Holiday are very big compared with forecasting errors for the other special days. In order to improve the accuracy of load forecasting for Chuseok Holiday, selection of input data, the daily normalized load patterns and load forecasting model are investigated. The efficient data selection and daily normalized load pattern based on fuzzy linear regression model is proposed. The proposed load forecasting method for Chuseok Holiday is tested in recent 5 years from 2006 to 2010, and improved the accuracy of the load forecasting compared with the former research.

수요경향과 온도를 고려한 1일 최대전력 수요예측 (Daily peak load forecasting considering the load trend and temperature)

  • 최낙훈;손광명;이태기
    • 조명전기설비학회논문지
    • /
    • 제15권6호
    • /
    • pp.35-42
    • /
    • 2001
  • 1일 최대전력 부하 예측 자료는 계통의 경제적 운용과 전력 감시에 필수적이므로 정확한 예측기법이 요구된다. 신경회로망이나 퍼지이론을 한 예측비법의 장점은 정도(精度)가 높고 운용하기가 편리한 점은 있으나 학습시간이 길고, 부하가 급변할 때는 예측오차가 크게 발생한다. 본 연구에서는 이러한 단점을 개선하기 위하여 새로운 예측 기법을 제시하였으며 예측결과에서 타당성이 입증되었다.

  • PDF

온도를 고려한 지수평활에 의한 단기부하 예측 (Short-Term Load Forecasting Exponential Smoothoing in Consideration of T)

  • 고희석;이태기;김현덕;이충식
    • 대한전기학회논문지
    • /
    • 제43권5호
    • /
    • pp.730-738
    • /
    • 1994
  • The major advantage of the short-term load forecasting technique using general exponential smoothing is high accuracy and operational simplicity, but it makes large forecasting error when the load changes repidly. The paper has presented new technique to improve those shortcomings, and according to forecasted the technique proved to be valid for two years. The structure of load model is time function which consists of daily-and temperature-deviation component. The average of standard percentage erro in daily forecasting for two years was 2.02%, and this forecasting technique has improved standard erro by 0.46%. As relative coefficient for daily and seasonal forecasting is 0.95 or more, this technique proved to be valid.

  • PDF

추석과 설날 연휴에 대한 전력수요예측 알고리즘 개선 (An Improvement Algorithm of the Daily Peak Load Forecasting for Korean Thanksgiving Day and the Lunar New Year's Day)

  • 구본석;백영식;송경빈
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권10호
    • /
    • pp.453-459
    • /
    • 2002
  • This paper proposes an improved algorithm of the daily peak load forecasting for Korean Thanksgiving Day and the Lunar New Year's day. So far, many studies on the short-term load forecasting have been made to improve the accuracy of the load forecasting. However, the large errors of the load forecasting occur i case of Korean Thanksgiving Day and the Lunar New Year's Day. In order to reduce the errors of the load forecasting, the fuzzy linear regression method is introduced and a good selection method of the past load pattern is presented. Test results show that the proposed algorithm improves the accuracy of the load forecasting.

특수일의 최대 전력수요예측 알고리즘 개선 (An Improved Algorithm of the Daily Peak Load Forecasting fair the Holidays)

  • 송경빈;구본석;백영식
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권3호
    • /
    • pp.109-117
    • /
    • 2002
  • High accuracy of the load forecasting for power systems improves the security of the power system and generation cost. However, the forecasting problem is difficult to handle due to the nonlinear and the random-like behavior of system loads as well as weather conditions and variation of economical environments. So far. many studies on the problem have been made to improve the prediction accuracy using deterministic, stochastic, knowledge based and artificial neural net(ANN) method. In the conventional load forecasting method, the load forecasting maximum error occurred for the holidays on Saturday and Monday. In order to reduce the load forecasting error of the daily peak load for the holidays on Saturday and Monday, fuzzy concept and linear regression theory have been adopted into the load forecasting problem. The proposed algorithm shows its good accuracy that the average percentage errors are 2.11% in 1996 and 2.84% in 1997.

전력계통 유지보수 및 운영을 위한 향후 4주의 일 최대 전력수요예측 (Daily Maximum Electric Load Forecasting for the Next 4 Weeks for Power System Maintenance and Operation)

  • 정현우;송경빈
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1497-1502
    • /
    • 2014
  • Electric load forecasting is essential for stable electric power supply, efficient operation and management of power systems, and safe operation of power generation systems. The results are utilized in generator preventive maintenance planning and the systemization of power reserve management. Development and improvement of electric load forecasting model is necessary for power system maintenance and operation. This paper proposes daily maximum electric load forecasting methods for the next 4 weeks with a seasonal autoregressive integrated moving average model and an exponential smoothing model. According to the results of forecasting of daily maximum electric load forecasting for the next 4 weeks of March, April, November 2010~2012 using the constructed forecasting models, the seasonal autoregressive integrated moving average model showed an average error rate of 6,66%, 5.26%, 3.61% respectively and the exponential smoothing model showed an average error rate of 3.82%, 4.07%, 3.59% respectively.

특수일 조업률 반영을 통한 전력수요예측 정확도 향상 (Improvement of the Load Forecasting Accuracy by Reflecting the Operation Rates of Industries on the Consecutive Holidays)

  • 임남식;이상중
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1115-1120
    • /
    • 2016
  • This paper presents the daily load forecasting for special days considering the rate of operation of industrial consumers. The authors analyzed the power consumption pattern for both the special and ordinary days according to the contract power classification of industrial consumers, and selected 400~600 specific consumers for which the rates of operation during special days are needed. Load forecasting for 2014 special days considering the rate of operation of industrial consumers showed a noticeable improvement on forecasting error of daily peak demand, which proved the effectiveness of the survey for the rates of operation during special days of industrial consumers.

온도와 부하의 비선형성을 이용한 단기부하예측에서의 TAR(Threshold Autoregressive) 모델 (TAR(Threshold Autoregressive) Model for Short-Term Load Forecasting Using Nonlinearity of Temperature and Load)

  • 이경훈;이윤호;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권9호
    • /
    • pp.399-399
    • /
    • 2001
  • This paper proposes TAR(Threshold Autoregressive) model for short-term load forecasting including temperature variable. In the scatter diagram of daily peak load versus daily high or low temperature, we can find out that the load-temperature relationship has a negative slope in the lower regime and a positive slope in the upper regime due to the heating and cooling load, respectively. TAR model is adequate for analyzing these phenomena since TAR model is a piecewise linear autoregressive model. In this paper, we estimated and forecasted one day-ahead daily peak load by applying TAR model using this load-temperature characteristic in these regimes. The results are compared with those of linear and quadratic regression models.

온도와 부하의 비선형성을 이용한 단기부하예측에서의 TAR(Threshold Autoregressive) 모델 (TAR(Threshold Autoregressive) Model for Short-Term Load Forecasting Using Nonlinearity of Temperature and Load)

  • 이경훈;이윤호;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권9호
    • /
    • pp.309-405
    • /
    • 2001
  • This paper proposes TAR(Threshold Autoregressive) model for short-term load forecasting including temperature variable. In the scatter diagram of daily peak load versus daily high or low temperature, we can find out that the load-temperature relationship has a negative slope in the lower regime and a positive slope in the upper regime due to the heating and cooling load, respectively. TAR model is adequate for analyzing these phenomena since TAR model is a piecewise linear autoregressive model. In this paper, we estimated and forecasted one day-ahead daily peak load by applying TAR model using this load-temperature characteristic in these regimes. The results are compared with those of linear and quadratic regression models.

  • PDF

Locally-Weighted Polynomial Neural Network for Daily Short-Term Peak Load Forecasting

  • Yu, Jungwon;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권3호
    • /
    • pp.163-172
    • /
    • 2016
  • Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.