• 제목/요약/키워드: DYNAMIC ANALYSIS

검색결과 14,704건 처리시간 0.039초

동적 해석법을 이용한 내진설계 결과의 비교 고찰 (Comparative Study on the Results of Seismic Design by Dynamic Analysis Method)

  • 이성우;노홍식;심규점
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.81-89
    • /
    • 1991
  • Recently increasing number of highrise buildings are aseismically designed by dynamic analysis method. To perform comparative study on the results of seismic design by dynamic analysis method, five-to thirty-story building models of ductile moment resisting frames and braced frames are considered. Base shears of these models using the spectrum of equivalent static method in the current Korean code and the ones of dynamic analysis method in the UBC-88 code are compared. Based on this study design spectra to be used in the dynamic analysis in Korea are proposed and the results are compared.

  • PDF

Analysis of the Static and Dynamic Stability Properties of the Unmaned Airship

  • Lee, Hae Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권2호
    • /
    • pp.82-94
    • /
    • 2001
  • The purpose of this paper is to analyze the static and dynamic stability-of the unmanned airship under development ; the target airship's over-all length of hull is 50m and the maximum diameter is 12.5m. For the analysis, the dynamic model of an airship was defined and both the nonlinear and linear dynamic equations of motion were derived. Two different configuration models (KA002Y and KA003Y) of the airship were used for the target model of the static stability analysis and the dynamic stability analysis. From the result of analyses, though the airship is unstable in static stability, dynamic characteristics of the airship can provide the stable dynamic stability. All of the results, airship models and dynamic flight equations will be an important basement and basic information for the next step of developing the automatic flight control system(AFCS) and the stability augmentation system(SAS) for the unmanned airship as well as for the stratospheric airship in the future.

  • PDF

부분구조 합성법을 이용한 공작기계 구조물의 동적설계 (Dynamic Design of Machine Tool Structure by Substructure Synthesis Method)

  • 이원광
    • 한국생산제조학회지
    • /
    • 제5권4호
    • /
    • pp.82-89
    • /
    • 1996
  • In this study, to choose the drilling m/c with analysis model for dynamic design of machine tool strctures, are used substucture syntheis method for reduction to degrees of freedom of dynamic model and analysis evaluation of substructures The dynamic factors of substurctures are examined by substructure synthesis method. And that dynamic design of structures for energy balancing are performed. The computer program for calculated of the dynamic and energy distribution analysis was developed. Result of numerical analysis by developed program obtained to conclusion as following. The design of machine tool structures by dynamic avoid the resonances, and are known to considered based on the energy balancing. These methods can be used effectively for the performance evaluation, design modification and improvement of dynamic performance evaluation, design modification and improvement of dynamic performance of machine tools.

  • PDF

Proposed dynamic p-y curves on a single pile considering shear wave velocity of soil

  • Song, Sumin;Lim, Hyunsung;Park, Seongyong;Jeong, Sangseom
    • Earthquakes and Structures
    • /
    • 제23권4호
    • /
    • pp.353-361
    • /
    • 2022
  • The dynamic behavior of a single pile was investigated by using analytical and numerical studies. The focus of this study was to develop the dynamic p-y curve of a pile for pseudo-static analysis considering the shear wave velocity of the soil by using three-dimensional numerical analyses. Numerical analyses were conducted for a single pile in dry sand under changing conditions such as the shear wave velocity of the soil and the acceleration amplitudes. The proposed dynamic p-y curve is a shape of hyperbolic function that was developed to take into account the influence of the shear wave velocity of soil. The applicability of pseudo-static analysis using the proposed dynamic p-y curve shows good agreement with the general trends observed by dynamic analysis. Therefore, the proposed dynamic p-y curve represents practical improvements for the seismic design of piles.

동하중을 받는 구조물의 동적특성에 관한 설계 관점에서의 고찰 (An Investigation of Dynamic Characteristics of Structures Subjected to Dynamic Load from the Viewpoint of Design)

  • 이현아;김용일;강병수;김주성;박경진
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1194-1201
    • /
    • 2006
  • All the loads in the real world are dynamic loads and structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to static loads by dynamic factors, which are believed equivalent to the dynamic loads. However, due to the difference of load characteristics, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency of the structure is low, the inertia effect should not be ignored. Then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also dynamic response optimization results are compared with the results with static loads transformed from dynamic loads by dynamic factors, which show the necessity of the design considering dynamic loads.

체결부 및 공차를 고려한 구조물의 확률기반 동적 특성 연구 (Probabilistic Analysis of Dynamic Characteristics of Structures considering Joint Fastening and Tolerance)

  • 원준호;강광진;최주호
    • 한국항공운항학회지
    • /
    • 제18권4호
    • /
    • pp.44-50
    • /
    • 2010
  • Structural vibration is a significant problem in many multi-part or multi-component assemblies. In aircraft industry, structures are composed of various fasteners, such as bolts, snap, hinge, weld or other fastener or connector (collectively "fasteners"). Due to these, prediction and design involving dynamic characteristics is quite complicated. However, the current state of the art does not provide an analytical tool to effectively predict structure's dynamic characteristics, because consideration of structural uncertainties (i.e. material properties, geometric tolerance, dimensional tolerance, environment and so on) is difficult and very small fasteners in the structure cause a huge amount of analysis time to predict dynamic characteristics using the FEM (finite element method). In this study, to resolve the current state of the art, a new approach is proposed using the FEM and probabilistic analysis. Firstly, equivalent elements are developed using simple element (e.g. bar, beam, mass) to replace fasteners' finite element model. Developed equivalent elements enable to explain static behavior and dynamic behavior of the structure. Secondly, probabilistic analysis is applied to evaluate the PDF (probability density function) of dynamic characteristics due to tolerance, material properties and so on. MCS (Monte-Carlo simulation) is employed for this. Proposed methodology offers efficiency of dynamic analysis and reality of the field as well. Simple plates joined by fasteners are taken as an example to illustrate the proposed method.

A performance based strategy for design of steel moment frames under blast loading

  • Ashkezari, Ghasem Dehghani
    • Earthquakes and Structures
    • /
    • 제15권2호
    • /
    • pp.155-164
    • /
    • 2018
  • Design of structures subjected to blast loads are usually carried out through nonlinear inelastic dynamic analysis followed by imposing acceptance criteria specified in design codes. In addition to comprehensive aspects of inelastic dynamic analyses, particularly in analysis and design of structures subjected to transient loads, they inherently suffer from convergence and computational cost problems. In this research, a strategy is proposed for design of steel moment resisting frames under far range blast loads. This strategy is inspired from performance based seismic design concepts, which is here developed to blast design. For this purpose, an algorithm is presented to calculate the capacity modification factors of frame members in order to simplify design of these structures subjected to blast loading. The present method provides a simplified design procedure in which the linear dynamic analysis is preformed, instead of the time-consuming nonlinear dynamic analysis. Nonlinear and linear analyses are accomplished in order to establish this design procedure, and consequently the final design procedure is proposed as a strategy requiring only linear structural analysis, while acceptance criteria of nonlinear analysis is implicitly satisfied.

조속기의 동적 평형위치 해석 (Analysis of Dynamic Equilibrium Configuration of Speed Governor)

  • 강주석
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.4733-4738
    • /
    • 2013
  • 본 연구에서는 구속조건을 가진 기계계의 동적 평형위치를 다물체 동역학 해석방법을 이용하여 계산하였다. 다물체계에서 얻어지는 시간 구속조건을 가진 구속조건식과 동역학식으로부터 독립좌표계로 이루어진 동적평형식을 유도하였다. 동적 평형식은 구속조건식과 함께 비선형 대수방정식의 형태로서 Newton-Raphson 방법을 이용하여 수치해를 구하였다. 제안된 동적 평형 계산 방법을 조속기에 적용하여 동적 평형위치를 구하였다. 해석결과는 상용 프로그램의 동역학해석을 통한 평형위치의 결과와 비교하여 타당성을 검증하였다. 조속기의 회전 각속도에 대한 평형위치를 계산하고 설계 파라미터에 대한 평형위치의 영향을 분석하였다.

지진하중을 받는 단자유도 구조물의 신속한 동적 신뢰성 추정 방법 (Fast Dynamic Reliability Estimation Approach of Seismically Excited SDOF Structure)

  • 이도근;옥승용
    • 한국안전학회지
    • /
    • 제35권5호
    • /
    • pp.39-48
    • /
    • 2020
  • This study proposes a fast estimation method of dynamic reliability indices or failure probability for SDOF structure subjected to earthquake excitations. The proposed estimation method attempts to derive coefficient function for correcting dynamic effects from static reliability analysis in order to estimate the dynamic reliability analysis results. For this purpose, a total of 60 cases of structures with various characteristics of natural frequency and damping ratio under various allowable limits were taken into account, and various types of approximation coefficient functions were considered as potential candidate models for dynamic effect correction. Each reliability index was computed by directly performing static and dynamic reliability analyses for the given 60 cases, and nonlinear curve fittings for potential candidate models were performed from the computed reliability index data. Then, the optimal estimation model was determined by evaluating the accuracy of the dynamic reliability analysis results estimated from each candidate model. Additional static and dynamic reliability analyses were performed for new models with different characteristics of natural frequency, damping ratio and allowable limit. From these results, the accuracy and numerical efficiency of the optimal estimation model were compared with the dynamic reliability analysis results. As a result, it was confirmed that the proposed model can be a very efficient tool of the dynamic reliability estimation for seismically excited SDOF structure since it can provide very fast and accurate reliability analysis results.

철근콘크리트 보통전단벽의 전단력 증폭효과 근사해석 (Approximate Analysis for Shear Force Amplification Effect in Ordinary RC Shear Walls)

  • 전성하;박지훈
    • 한국지진공학회논문집
    • /
    • 제24권3호
    • /
    • pp.129-139
    • /
    • 2020
  • An approximate analysis method is proposed to predict the dynamic amplification of shear forces in ordinary reinforced concrete shear walls as a preliminary study. First, a seismic design for three groups of ordinary reinforced concrete shear walls higher than 60 m was created on the basis of nonlinear dynamic analysis. Causes for the dynamic amplification effect of shear forces were investigated through a detailed evaluation of the nonlinear dynamic analysis result. A new modal combination rule was proposed on the basis of that observation, in which fundamental mode response and combined higher mode response were summed directly. The fundamental mode response was approximated by nonlinear static analysis result, while higher mode response was computed using response spectrum analysis for equivalent linear structural models with the effective stiffness based on the nonlinear dynamic analysis result. The proposed approximate analysis generally predicted vertical distribution of story shear and shear forces of individual walls from the nonlinear dynamic analysis with comparable accuracy.