• Title/Summary/Keyword: DY(Deflection Yoke)

Search Result 17, Processing Time 0.033 seconds

Simulation Tool of Rectangular Deflection Yoke for CRT

  • Woo, Duck-Kee;Park, Jong-Jin;Cheun, Jong-Mok;Park, Moo-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1141-1146
    • /
    • 2003
  • We have developed the three-dimensional simulation tool for the design of deflection yoke. This tool consists of a modeler, a solver and a post-processor. The modeler easily makes models of Deflection Yoke (DY) and ferrite core (Circle, RAC and RTC) by the parameters and supports several element types (line, surface and quadrilateral). The solver calculates charge density and magnetic field of DY by boundary element method (BEM). We can simply evaluate misconvergence, distortion and inductance of DY in the post-processor, so we apply this simulation tool to 32" rectangular deflection yoke. We can conveniently implement the efficient development of DY in the future.

  • PDF

Control of Convergence for Deflection Yoke Using Neuro-Fuzzy Model (뉴로 퍼지 모델을 이용한 편향요크의 RGB색 일치에 대한 제어)

  • 정병묵;임윤규;정창욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.19-27
    • /
    • 1998
  • Color Display Tube (CDT) used in computer monitors, consists of many components. Deflection Yoke(DY) among them supplies the vertical and horizontal magnetic fields so that the spatial trajectories of electron beams are deflected according to the synchronization signals. If the magnetic fields are not correctly formed, there will be color blurring or blooming by a mis-convergence of each beam and the color image on screen may not be clear. Therefore, in the manufacture of DY. its quality is strictly examined to get the desired convergence and the occurred mis-convergence can be cured by sticking ferrite sheets on the inner part of DY. However, because it needs expert's knowledge and experience to find the proper position of the sheet, this article introduces an intelligent controller that the knowledge-base represented by a neuro-fuzzy model is used to find the optimal position of the ferrite sheet for the convergence.

  • PDF

Design Verification of the DY (Deflection Yoke) Using a CAI (Computer-Aided Inspection) Technique (전산역설계(Reverse Engineering) 기술을 이용한 편향코일(DY)의 설계 검증 연구)

  • 윤정호;전형환;최광일;김용환;이관행
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.22-30
    • /
    • 1998
  • The deflection yoke (DY) controls the direction of the electron beam that falls on the screen of the television monitor. Its quality depends on the shape and density of coils wound around the DY coil separator. Winding frames are used to make these coils, and therefore, their shapes are essential in making quality coils. A reverse engineering(RE) is applied to create the 3D model of the winding frame. It considerably shortens the design verification time and shows the level of accuracy that is feasible in the production mode. The paper explains each step of the reverse engineering process in detail.

  • PDF

Optimization of Bobbin winding type Deflection Yoke Wire Distribution By Using Evolution Startegy (Evolution Startegy를 이용한 Bobbin형 편향코일의 권선분포 최적화)

  • Joe, M.C.;Kang, B.H.;Koh, C.S.;Joo, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.130-132
    • /
    • 1994
  • Recently, a Deflection Yoke(DY) is designed in the bobbin-seperator-coil-winding type for high-definite CRT and high-efficient DY of wide vision TV or High Definite TV. This paper presents an optimization or bobbin-seperator-coil-winding type yoke's coil distribution for minimizing gap between desired and practical deflections of electron beams using by Evolution Strategy.

  • PDF

A Three-dimensional Magnetic Field Mapping System for Deflection Yoke of Cathode-Ray Tube

  • Park, K.H.;Yoon, M.;Lee, S.M.;Joo, H.D.;Lee, S.D.;Yang, W.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.868-871
    • /
    • 2002
  • In this paper, we introduce an efficient three-dimensional magnetic field mapping system for a Deflection Yoke (DY) in Cathode-Ray Tube (CRT). A three-axis Hall probe mounted in a small cylindrical bar and three stepping motors placed in a nonmagnetic frame are utilized for the mapping. Prior to the mapping starts, the inner contour of DY is measured by a laser sensor to make a look-up table for inner shape of DY. Three-axis magnetic fields are then digitized by a three-dimensional Hall probe. The results of the mapping can be transformed to various output formats such as multipole harmonics of magnetic fields. Field shape in one, two and three-dimensional spaces can also be displayed. In this paper, we present the features of this mapping device and show some analysis results.

  • PDF

Electron Beam Simulation Technology for CRTs

  • Shirai, Shoji;Oku, Kentarou
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.385-387
    • /
    • 2002
  • The electron beam simulation technology is indispensable for the recent electron gun design. The technology is becoming more and more important for deflection yoke (DY) design and investigation of the interference effects between gun and DY. Further, it may become vital even for shadow mask, glass funnel, exposure lens and magnetic shield.

  • PDF

Rule Generation Adust Convergence for Deflection Yoke Using Rough Set Theory (러프 집합 이론을 이용한 편향요크의 컴커젼수 조정을 위한 규칙생성)

  • 방원철;변증남;변명현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.218-224
    • /
    • 1998
  • 본 논문에서는 컬러 모니터용 전자관(CDT; Color Display Tube)의 편향 요크(DY; Deflection Yoke)의 제조 공정상 오차가 발생시키는 컨버전스의 오차를 보정하기 위하여 붙이는 페라이트 박판(Ferrite Sheet)의 위치를 결정하는 규칙을 생성하는 박판을 붙여야 하는지 판단한다. 이를 러프 집합 이론을 이용하여 컨버전스 값을 조건부 속성으로, 페라이트 박판의 위치를 판단부 속성으로 하여 판단 테이블을 만들고 이때 발생하는 몇 가지 문제를 해결하여 최소화된 규칙을 찾아내는 방안을 제안한다.

  • PDF

Magnetic Field Analysis of Deflection Yoke Using Novel Technique for the Accurate Analysis of Current Distribution (새로운 전류분포 해석법을 이용한 자기 편향 요크의 자계 해석)

  • Im, Chang-Hwan;Kim, Hong-Kyu;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.590-593
    • /
    • 2000
  • The analysis of current distribution in a solidly modeled coil is very important for accurate analysis of electric machines such as deflection yoke(DY). In general, Modeling every coils is impossible for analyzing magnetic field using the 3-D FEM, so solidly modeled coil is usually used. Some methods have been developed for analyzing current distribution, but these methods have fatal disadvantage that they cannot be applied to an arbitrary shaped coil and that they yield numerical errors. In this paper. a novel method for resolving the problems mentioned above is proposed. The new method is verified by the application to a DY and it shows improved results.

  • PDF

Integer Programming Approach to the Convergence Adjustment on Color Display Tube

  • Park, Sungsoo;Kang, Donghan;Lee, Hyohyung;Hong, Cheol-Kee
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.63-70
    • /
    • 2004
  • In this paper, we consider the adjustment of convergence on Color Display Tube (CDT). Convergence is a measure of how well the red, green and blue beams are physically aligned with each other to strike the same area on the screen. When misconvergence (convergence error) occurs, one way of compensating it is to attach several ferrite sheets on the inner part of Deflection Yoke (DY). We suggest an optimization model of misconvergence compensation process and report test results for 81 DY samples. As a result, more than 90% of the samples could be made to satisfy the required convergence criteria.

Optimization of the Deflection Yoke Coil for Color Display Tubes

  • Im, Chang-Hwan;Jung, Hyun-Kyo;Jung, Kwang-Sig;Cho, Yoon-Hyoung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.3
    • /
    • pp.81-85
    • /
    • 2001
  • Processes for optimizing the coil shape of deflection yoke are proposed A very accurate and practical winding modeler is developed and volume integral equation method (VIEM) is used for field calculation. Two steps of optimizations are done by using (1+1) evolution strategy. Those are dimensional optimization and pin-position optimization Various techniques are applied for reducing computational time for the optimization.