• Title/Summary/Keyword: DWT

Search Result 602, Processing Time 0.02 seconds

Effective Image Super-Resolution Algorithm Using Adaptive Weighted Interpolation and Discrete Wavelet Transform (적응적 가중치 보간법과 이산 웨이블릿 변환을 이용한 효율적인 초해상도 기법)

  • Lim, Jong Myeong;Yoo, Jisang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.3
    • /
    • pp.240-248
    • /
    • 2013
  • In this paper, we propose a super-resolution algorithm using an adaptive weighted interpolation(AWI) and discrete wavelet transform(DWT). In general, super-resolution algorithms for single-image, probability based operations have been used for searching high-frequency components. Consequently, the complexity of the algorithm is increased and it causes the increase of processing time. In the proposed algorithm, we first find high-frequency sub-bands by using DWT. Then we apply an AWI to the obtained high-frequency sub-bands to make them have the same size as the input image. Now, the interpolated high-frequency sub-bands and input image are properly combined and perform the inverse DWT. For the experiments, we use the down-sampled version of the original image($512{\times}512$) as a test image($256{\times}256$). Through experiment, we confirm the improved efficiency of the proposed algorithm comparing with interpolation algorithms and also save the processing time comparing with the probability based algorithms even with the similar performance.

Applications of Discrete Wavelet Analysis for Predicting Internal Quality of Cherry Tomatoes using VIS/NIR Spectroscopy

  • Kim, Ghiseok;Kim, Dae-Yong;Kim, Geon Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.48-54
    • /
    • 2013
  • Purpose: This study evaluated the feasibility of using a discrete wavelet transform (DWT) method as a preprocessing tool for visible/near-infrared spectroscopy (VIS/NIRS) with a spectroscopic transmittance dataset for predicting the internal quality of cherry tomatoes. Methods: VIS/NIRS was used to acquire transmittance spectrum data, to which a DWT was applied to generate new variables in the wavelet domain, which replaced the original spectral signal for subsequent partial least squares (PLS) regression analysis and prediction modeling. The DWT concept and its importance are described with emphasis on the properties that make the DWT a suitable transform for analyzing spectroscopic data. Results: The $R^2$ values and root mean squared errors (RMSEs) of calibration and prediction models for the firmness, sugar content, and titratable acidity of cherry tomatoes obtained by applying the DWT to a PLS regression with a set of spectra showed more enhanced results than those of each model obtained from raw data and mean normalization preprocessing through PLS regression. Conclusions: The developed DWT-incorporated PLS models using the db5 wavelet base and selected approximation coefficients indicate their feasibility as good preprocessing tools by improving the prediction of firmness and titratable acidity for cherry tomatoes with respect to $R^2$ values and RMSEs.

Digital Watermarking for JPEG2000 (JPEG2000을 위한 디지털 워터마킹)

  • 서용석;주상현;정호열
    • Journal of Broadcast Engineering
    • /
    • v.6 no.1
    • /
    • pp.32-40
    • /
    • 2001
  • In this paper, we propose a DWT (discrete Wavelet Transform) based watermarking method, which can be conveniently Integrated In the up-coming JPEG2770 baseline system. Although Conventional DWT based watermarking techniques insert watermark signal Into wavelet coefficients after the transform, our proposed method embeds a watermark into wavelet coefficients obtained from the ongoing process of lifting for DWT. The proposed method allows us to selectively determine frequency characteristics of the coefficients where the watermark is embedded. so that the Inserted watermark cannot be removed or altered even when the filter-bank for DWT is known. Through the simulation, we show that the proposed method is more secure and more robust against various attacks than conventional DWT barred watermarking techniques.

  • PDF

Blind Color Image Watermarking Based on DWT and LU Decomposition

  • Wang, Dongyan;Yang, Fanfan;Zhang, Heng
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.765-778
    • /
    • 2016
  • In watermarking schemes, the discrete wavelet transform (DWT) is broadly used because its frequency component separation is very useful. Moreover, LU decomposition has little influence on the visual quality of the watermark. Hence, in this paper, a novel blind watermark algorithm is presented based on LU transform and DWT for the copyright protection of digital images. In this algorithm, the color host image is first performed with DWT. Then, the horizontal and vertical diagonal high frequency components are extracted from the wavelet domain, and the sub-images are divided into $4{\times}4$ non-overlapping image blocks. Next, each sub-block is performed with LU decomposition. Finally, the color image watermark is transformed by Arnold permutation, and then it is inserted into the upper triangular matrix. The experimental results imply that this algorithm has good features of invisibility and it is robust against different attacks to a certain degree, such as contrast adjustment, JPEG compression, salt and pepper noise, cropping, and Gaussian noise.

A Blind Watermarking Scheme Using Singular Vector Based On DWT/RDWT/SVD (DWT/RDWT/SVD에 기반한 특이벡터를 사용한 블라인드 워터마킹 방안)

  • Luong, Ngoc Thuy Dung;Sohn, Won
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • We proposed a blind watermarking scheme using singular vectors based on Discrete Wavelet Transform (DWT) and Redundant Discrete Wavelet Transform (RDWT) combined with Singular Value Decomposition (SVD) for copyright protection application. We replaced the 1st left and right singular vectors decomposed from cover image with the corresponding ones from watermark image to overcome the false-positive problem in current watermark systems using SVD. The proposed scheme realized the watermarking system without a false positive problem, and shows high fidelity and robustness.

Design and Implementation of Low-Power DWT Processor for JPEG2000 Compression of Medical Images (의료영상의 JPEG2000 압축을 위한 저전력 DWT 프로세서의 설계 및 구현)

  • Jang Young-Beom;Lee Won-Sang;Yoo Sun-Kook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.2
    • /
    • pp.124-130
    • /
    • 2005
  • In this paper, low-power design and implementation techniques for DWT(Discrete Wavelet Transform) of the JPEG2000 compression are proposed. In DWT block of the JPEG2000, linear phase 9 tap and 7 tap filters are used. For low-power implementation of those filters, processor technique for DA(Distributed Arithmetic) filter and minimization technique for number of addition in CSD(Canonic Signed Digit) filter are utilized. Proposed filter structure consists of 3 blocks. In the first CSD coefficient block, every possible 4 bit CSD coefficients are calculated and stored. In second processor block, multiplication is done by MUX and addition processor in terms of the binary values of filter coefficient. Finally, in third block, multiplied values are output and stored in flip-flop train. For comparison of the implementation area and power dissipation, proposed and conventional structures are implemented by using Verilog-HDL coding. In simulation, it is shown that 53.1% of the implementation area can be reduced comparison with those of the conventional structure.

DCT and DWT Based Robust Audio Watermarking Scheme for Copyright Protection

  • Deb, Kaushik;Rahman, Md. Ashikur;Sultana, Kazi Zakia;Sarker, Md. Iqbal Hasan;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Digital watermarking techniques are attracting attention as a proper solution to protect copyright for multimedia data. This paper proposes a new audio watermarking method based on Discrete Cosine Transformation (DCT) and Discrete Wavelet Transformation (DWT) for copyright protection. In our proposed watermarking method, the original audio is transformed into DCT domain and divided into two parts. Synchronization code is applied on the signal in first part and 2 levels DWT domain is applied on the signal in second part. The absolute value of DWT coefficient is divided into arbitrary number of segments and calculates the energy of each segment and middle peak. Watermarks are then embedded into each middle peak. Watermarks are extracted by performing the inverse operation of watermark embedding process. Experimental results show that the hidden watermark data is robust to re-sampling, low-pass filtering, re-quantization, MP3 compression, cropping, echo addition, delay, and pitch shifting, amplitude change. Performance analysis of the proposed scheme shows low error probability rates.

LBP and DWT Based Fragile Watermarking for Image Authentication

  • Wang, Chengyou;Zhang, Heng;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.666-679
    • /
    • 2018
  • The discrete wavelet transform (DWT) has good multi-resolution decomposition characteristic and its low frequency component contains the basic information of an image. Based on this, a fragile watermarking using the local binary pattern (LBP) and DWT is proposed for image authentication. In this method, the LBP pattern of low frequency wavelet coefficients is adopted as a feature watermark, and it is inserted into the least significant bit (LSB) of the maximum pixel value in each block of host image. To guarantee the safety of the proposed algorithm, the logistic map is applied to encrypt the watermark. In addition, the locations of the maximum pixel values are stored in advance, which will be used to extract watermark on the receiving side. Due to the use of DWT, the watermarked image generated by the proposed scheme has high visual quality. Compared with other state-of-the-art watermarking methods, experimental results manifest that the proposed algorithm not only has lower watermark payloads, but also achieves good performance in tamper identification and localization for various attacks.

Adaptive Object Classification using DWT and FI (이산웨이블릿 변환과 퍼지추론을 이용한 적응적 물체 분류)

  • Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.219-225
    • /
    • 2006
  • This paper presents a method of object classification based on discrete wavelet transform (DWT) and fuzzy inference(FI). It concentrated not only on the design of fuzzy inference algorithm which is suitable for low speed uninhabited transportation such as, conveyor but also on the minimize the number of fuzzy rule. In the preprocess of feature extracting, feature parameters are extracted by using characteristics of the coefficients matrix of DWT. Such feature parameters as area, perimeter and a/p ratio are used obtained from DWT coefficients blocks. Secondly, fuzzy if - then rules that can be able to adapt the variety of surroundings are developed. In order to verify the performance of proposed scheme, In the middle of fuzzy inference, the Mamdani's and the Larsen 's implication operators are utilized. Experimental results showed that proposed scheme can be applied to the variety of surroundings.

  • PDF

Multi-Watermarking for Image Authentication Based on DWT Coefficients (이미지 인증을 위한 DWT 계수기반 다중 워터마킹)

  • Lee Hye-Ran;Rhee Kyung-Hyune
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.113-122
    • /
    • 2005
  • In this paper, we propose a multi-watermarking algorithm to satisfy two purposes: fragility against malicious attacks and robustness against non-malicious attacks. The algorithm can be used for image authentication using coefficients of Discrete Wavelet Transform(DWT). In the proposed method, watermarks are generated by combining binary image with some features extracted from the subband LL3, and then they are embedded into both the spatial and frequency domain. That is, on the spatial domain they are embedded into the Least Significant Bit(LSB) of all pixels of image blocks, and on the frequency domain the coefficients of the subband LH2 and HL2 are adjusted according to the watermarks. Thus the algorithm not only resists malicious attack but also permits non-malicious attacks such as blurring, sharpening, and JPEG compression.