• 제목/요약/키워드: DSSC(dye sensitized solar cell)

검색결과 177건 처리시간 0.034초

다중벽 탄소 나노튜브 기반 고충전 나노복합 페이스트를 이용한 염료 감응 태양 전지용 상대 전극의 제조에 있어서 분산 제어의 효과 (Effect of Dispersion Control of Multi-walled Carbon Nanotube in High Filler Content Nano-composite Paste for the Fabrication of Counter Electrode in Dye-sensitized Solar Cell)

  • 박소현;홍성철
    • 폴리머
    • /
    • 제37권4호
    • /
    • pp.470-477
    • /
    • 2013
  • 가공이 쉬우면서도 성능이 우수한 염료 감응 태양 전지(DSSC)용 상대 전극을 제조하기 위하여 다중벽 탄소 나노튜브(MWCNT) 기반의 고충전 나노복합 페이스트를 제조하고, MWCNT의 분산 제어가 미치는 영향에 대하여 조사하여 보았다. MWCNT의 분산성을 향상시키기 위하여 폴리스티렌 기반의 기능성 블록 공중합체를 리빙 라디칼 중합법으로 합성하여 MWCNT의 표면 개질제로 사용하였으며, 적절한 용매 조건의 선택을 통하여 고충전 나노복합 페이스트의 가공성이 향상되는 것을 확인할 수 있었다. MWCNT의 분산 제어를 통해 이를 상대 전극으로 도입한 DSSC의 광전 변환 효율이 향상됨을 확인할 수 있었으며, 이는 볼밀법을 이용한 MWCNT의 물리적 분산을 통해서도 검증할 수 있었다. 미량의 platinum(Pt) 나노입자와 복합화시킬 경우, 표준 Pt 상대 전극보다도 더 우수한 성능을 가지는 MWCNT 기반 상대 전극을 제조할 수 있음을 확인하였다.

Enhancement of Photoelectric Efficiency in a Dye-sensitized Solar Cell Using Hollow TiO2 Nanoparticles as an Overlayer

  • Lee, Kyoung-No;Kim, Woo-Byoung;Lee, Caroline Sunyong;Lee, Jai-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1853-1856
    • /
    • 2013
  • $TiO_2$ hollow nanoparticles (HNPs) and their light scattering effect which influences on the photoelectric conversion efficiency of a dye-sensitized solar cell (DSSC) were investigated. When only HNPs were employed in DSSC as the anode layer material, the conversion efficiency (e.g., 0.96%) was the lowest, possibly due to scattering loss of incident light. However, DSSC fabricated by using HNPs as a scattering overlayer on the $TiO_2$ nanoparticles (P-25), showed higher conversion efficiency (4.02%) than that without using HNPs (3.36%).

$TiO_2$ 소성 조건 변화에 따른 염료감응형 태양전지의 특성 연구 (Characteristics of dye-sensitized solar cell on different $TiO_2$ sintering conditions)

  • 손민규;서현웅;이경준;홍지태;김정훈;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1256-1257
    • /
    • 2008
  • Dye-Sensitized Solar Cell(DSSC) is a new type of solar cell by using photocatalytic properties of $TiO_2$. The size and shape of $TiO_2$ particle are two of important parameters that are related to the characteristics of DSSC. And these can be changed by controlling $TiO_2$ sintering conditions especially temperature. The particles of $TiO_2$ are classified anatase and rutile. Anatase particles are created at low sintering temperature and rutile particles are created at high sintering temperature. Anatase particles have advantages such as increased surfaces that cause more attached dye molecules, and fast electron transportation. And rutile particles have advatages such as more efficient light scattering. Therefore, we studied characteristics of DSSC in this paper as $TiO_2$ sintering temperature is varied. As a result, we found that characteristics of DSSC are very good in the case that anatase and rutile particles are together and this sintering temperature is 450$^{\circ}C$.

  • PDF

Photovoltaic Performance of Dye-sensitized Solar Cells assembled with Hybrid Composite Membrane based on Polypropylene Non-woven Matrix

  • Choi, Yeon-Jeong;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.605-608
    • /
    • 2011
  • Hybrid composite membranes were prepared by coating poly(ethylene oxide) and $SiO_2$ particles onto the porous polypropylene nonwoven matrix. Gel polymer electrolytes prepared by soaking the hybrid composite membranes in an organic electrolyte solution exhibited ionic conductivities higher than $1.1{\times}10^{-3}Scm^{-1}$ at room temperature. Dyesensitized solar cell (DSSC) employing the hybrid composite membrane with PEO and 10 wt % $SiO_2$ exhibited an open circuit voltage of 0.77 V and a short circuit current of 10.78 $mAcm^{-2}$ at an incident light intensity of 100 $mWcm^{-2}$, yielding a conversion efficiency of 5.2%. DSSC employing the hybrid composite membrane showed more stable photovoltaic performance than that of the DSSC assembled with liquid electrolyte.

TiO2-Nb2O5 반도체 산화물을 이용한 염료 감응 태양전지 특성개선연구 (A Study on the Characteristics of TiO2-Nb2O5 Semiconductor Oxides Using Dye-Sensitized Solar Cell)

  • 김해마로;이돈규
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.538-542
    • /
    • 2019
  • 광 전환 효율에 관여하는 $TiO_2$와 같은 반도체 산화물은 염료 감응 태양전지(Dye-sensitized solar cell, DSSC)의 주요 요소이며, 효율을 개선하기 위해 서로 다른 반도체 산화물을 혼합하여 Pastes를 제조해 사용하는 연구가 이루어지고 있다. 본 연구에서는 $TiO_2-Nb_2O_5$ 혼합 반도체 산화물을 제조하여 염료 감응 태양전지의 특성을 분석하였다. 혼합 반도체 산화물이 광 전환 효율에 미치는 전기적인 특성을 분석하기 위해서 $Nb_2O_5$을 서로 다른 비율로 첨가하여 태양전지를 제작하였다. 이에 $Nb_2O_5$가 첨가됨에 따라 전해질과의 접촉에 의한 재결합 현상보다 전도성이 겅화되어 태양전지의 단락 전류, 개방전압, 변환 효율 등이 개선되는 것을 확인하였다.

Preparation of spray-coated $TiO_2$ electrodes and I-V characteristics for Dye-sensitized Solar Cells

  • Lee, Won-Jae;Koo, Bo-Kun;Kim, Hyun-Joo;Lee, Dong-Yun;Song, Jae-Sung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.687-690
    • /
    • 2004
  • Fabrication and characterization of dye-sensitized TiO2 solar cells(DSSC) consisting of spray-coated TiO2 electrode, an electrolyte containing I-/I3- redox couple, and a Pt-coated counter electrode carried out, using mainly FE-SEM and solar simulator. Also, effect of rapid thermal annealing(RTA) temperatue on I-V curves of DSSCS consisting of approximately 10m thickness and $5{\times}5mm2$ active area. No significant difference in the apparent size of TiO2 clusters was observed with increasing RTA temperature. Also, an open circuit voltage(Voc) of approximately 0.70V and a short-circuit photocurrent(Jsc) of 8 to 12mA/cm2 were observed in the TiO2 solar cell. With increasing RTA temperature upto 550oC, photocurrent density of dye-sensitized solar cells was enhanced, leading to enhancing the efficiency of dye-sensitized solar cells having Pt-electroplated counter electrode.

  • PDF

Novel Application of Platinum Ink for Counter Electrode Preparation in Dye Sensitized Solar Cells

  • Kim, Sang Hern;Park, Chang Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.831-836
    • /
    • 2013
  • Platinized counter electrode is common in most of the dye sensitized solar cell (DSSC) researches because of its high catalytic activity and corrosion stability against iodine in the electrolyte. Platinum (Pt) film coating on fluorine doped tin oxide (FTO) glass surface by using alcoholic solution of hexachloroplatinic acid ($H_2PtCl_6$), paste containing Pt precursors or sputtering are widely used techniques. This paper presents a novel application of Pt ink containing nanoparticles for making platinized counter electrode for DSSC. The characteristics of Pt films coated on FTO glass surface by different chemical methods were compared along with the performance parameters of the DSSCs made by using the films as counter electrodes. The samples coated with Pt inks were sintered at $300^{\circ}C$ for 30 minutes whereas Pt-film and Pt-paste were sintered at $400^{\circ}C$ for 30 minutes. The Pt ink diluted in n-hexane was found to a promising candidate for the preparation of platinized counter electrode. The ink may also be applicable for DSSC on flexible substrates after optimization its sintering temperature.

스핀코팅법에 의해 제조되어진 나노다공질 TiO2 전극막을 이용한 염료감응형 태양전지 (Dye-sensitized Solar Cells with Mesoporous TiO2 Film Manufactured by Spin Coating Methode)

  • 구보근;이동윤;이원재;김현주;송재성
    • 한국전기전자재료학회논문지
    • /
    • 제17권9호
    • /
    • pp.1001-1005
    • /
    • 2004
  • Rye-sensitized solar cell (DSSC) is a new class of solar cell, which consists of nanoporous TiO$_2$ electrode, dye-sensitizer, electrolyte, and counter electrode. Such cell is operated in sunlight via the principle of photosynthetic electrochemistry. In order to obtain the good dispersion of nano size TiO$_2$ particles In slurry, the pH of solvent, the sort and quantify of solvent additive and the quantity of surfactant were adjusted. As results, the lower the pH of solvent was the lower the viscosity of the slurry became. The addition of ethylene glycol and propylene glycol to dilute HNO$_3$ brought about the lowering of viscosity and the enhancement of stability in slurry. The addition of surfactant lowered the viscosity of slurry. It was possible to obtain the homogeneous and uniformly dispersed mesoporous TiO$_2$ film using the dilute HNO$_3$ solvent of pH 2 with the addition of ethylene glycol and neutral surfactant. DSSC was assembled with TiO$_2$ electrode and Pt electrode, and its photoelectric property was measured using the monochromatic wavelength in the rangee of 350∼700 nm.

염료감응형 태양전지용 $TiO_2$ 광전극에 Graphene을 이용한 전기화학적 특성 (Electrochemical properties of Graphene based $TiO_2$ photoelectrode for dye-sensitized solar cells)

  • 왕교;조흥관;김은미;박경희;구할본;박복기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.134-134
    • /
    • 2009
  • We studied electrochemical properties of $TiO_2$ photoelectrode based graphene for dye-sensitized solar cells(DSSC). Gaphene has good electric conductivity and it is very good transparent when this is coated on monolayer. we prepared photoelectrode by squeeze methode and researched photoelectrical properties of $TiO_2$ electrode base gaphene. DSSC based on graphene was obtained conversion efficiency of 5.4% under irradiation of AM 1.5(100 $mWcm^2$).

  • PDF

전자선 조사를 통한 염료감응형 태양전지의 분해 연구 (Application of electron beam irradiation for studying the degradation of dye sensitized solar cells)

  • Akhtar, M.Shaheer;Lee, Hyun-Cheol;Min, Chun-Ji;Khan, M.A.;Kim, Ki-Ju;Yang, O-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.179-182
    • /
    • 2006
  • The effect of electron beam irradiation on dye sensitized solar cell (DSSC) has been studied to examine degradation of DSSC. The high-energy electron beam irradiation affects on the materials and performance of dye sensitized solar cells. We have checked the effects of electron beam irradiation of $TiO_2$ substrate with and without dye adsorption on the photovoltaic performances of resulting DSSCS and also studied the structural and electrical properties of polymers after irradiation. All solar cells materials were irradiated by electron beams with an energy source of 2MeV at different dose rates of 60 kGy, 120 kGy 240 kGy and 900 kGy and then their photoelectrical parameters were measured at 1 sun $(100 mW/cm^2)$. It was shown that the efficiency of DSSC was decreased as increasing the dose of e-beam irradiation due to lowering in $TiO_2$ crystallinity, decomposition of dye and oxidation of FTO glasses. On the other hand, the performance of solid-state DSSC with polyethylene oxide based electrolyte was improved after irradiation of e-beam due to enhancement of its conductivity and breakage of crosslinking.

  • PDF