• Title/Summary/Keyword: DSSC(dye sensitized solar cell)

Search Result 177, Processing Time 0.033 seconds

Nanostructured Photoelectrode Materials for Improving Light-Harvesting Properties in DSSCs

  • Jeong, Hyeon-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.7.2-7.2
    • /
    • 2011
  • Photoelectrochemical solar cells such as dye-sensitized cells (DSSCs), which exhibit high performance and are cost-effective, provide an alternative to conventional p-n junction photovoltaic devices. However, the efficiency of such cells plateaus at 11~12%, in contrast to their theoretical value of 33%. The majority of research has focused on improving energy conversion efficiency of DSSC by controlling nanostructure and exploiting new materials in photoelectrode consisting of semiconducting oxide nanoparticles and a transparent conducting oxide electrode (TCO). In this presentation, we introduce monodisperesed TiO2 nanoparticles prepared by forced hydrolysis method and their superiority as photoelectrode materials was characterized with aids of optical and electrochemical analysis. Inverse opal-based scattering layers containing highly crystalline anatase nanoparticles are also introduced and their feasibility for use as bi-functional light scattering layer is discussed in terms of optical reflectance and charge generation properties as a function of optical wavelength.

  • PDF

The electrochemical properties of $TiO_2$ photoanode using SBM co-polymer binders (SBM 고분자중합 바인더가 사용된 $TiO_2$ 광전극의 전기화학적 특성)

  • Jin, En-Mei;Park, Kyung-Hee;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.360-361
    • /
    • 2008
  • A new kind of SBM co-polymer binder as styrene, n-butyl acrylate, and methacrylic acid (SBM) monodisperse co-polymer binder materials basted on $TiO_2$ pastes was synthesized and this $TiO_2$ pastes were applied of dye-sensitized solar cells (DSSCs). The SBM co-polymer binder was prepared by soap-free emulsion copolymerization using a PEG-EEM macromonomer. The photoanodes were characterized by morphology investigated from field emission scanning electron microscopy (FE-SEM). The photoelectrochemical properties of the thin films and the performance of DSSCs were measured by photovoltaic-current density. DSSC based on the emulsion co-polymer binder was obtained conversion efficiency of 7.1% under irradiation of AM 1.5($100mWcm^{-2}$).

  • PDF

Improved sintering process of counter electrode for dye-sensitized solar cells

  • Lee, Su Young;Kim, Sang Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.227-228
    • /
    • 2012
  • In interfaces between carbon black or Pt and FTO glass in dye-sensitized solar cell counter electrodes, a marginal resistant channel for electrons, we tried to improve the connection by modifying the sintering process. A stepwise sintering process for carbon black and Pt counter electrodes was applied and its effect on power conversion efficiency was studied. Power conversion efficiencies of built-in DSSC made by a one-step sintering process with carbon black and Pt counter electrodes were about 5.01% and 5.02%, respectively. Cells made with the stepwise sintering process were 5.96% and 6.21%, respectively, indicating an 20% improvement. Fill factor (FF) increased, and it was them main reason for the power conversion efficiency improvement. Step wise sintering increased the adhesion of the interface and reduced the film thickness and surface roughness. As a result, the resistivity of the counter electrode and EIS impedance of DSSCs decreased.

  • PDF

Ru employed as Counter Electrode for TCO-less Dye Sensitized Solar Cells (투명전도층이 없는 염료감응형 태양전지의 Ru 상대전극 연구)

  • Noh, Yunyoung;Yoo, Kicheon;Yu, Byungkwan;Han, Jeungjo;Ko, Minjae;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.159-163
    • /
    • 2012
  • A TCO-less ruthenium (Ru) catalytic layer on glass substrate instead of conventional Ru/TCO/ glass substrate was assessed as counter electrode (CE) material in dye sensitized solar cells (DSSCs) by examining the effect of the Ru thickness on the DSSC performance. Ru films with different thicknesses (34, 46, 69, and 90 nm) were deposited by atomic layer deposition (ALD) on glass substrates to replace both existing catalyst and electrode layer. In order to make our comparison, we also prepared an Ru catalytic layer by a similar method on FTO/glass substrate. Finally, we prepared the $0.45cm^2$ DSSC device the properties of the DSSCs were examined by cyclic voltammetry (CV), impedance spectroscopy (EIS), and current-voltage (I-V) method. CV measurements revealed an increase in catalytic activity with increasing film thickness. The charge transfer resistance at the interface between the electrolyte and Rudecreased with increasing Ru thickness. I-V results showed that the energy conversion efficiency increased up to 1.96%. Our results imply that TCO-less Ru/glass might perform as both catalyst and electrode layer when it is used in counter electrodes in DSSCs.

A Zinc Porphyrin Sensitizer Modified with Donor and Acceptor Groups for Dye-Sensitized Solar Cells

  • Lee, Seewoo;Sarker, Ashis K.;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3052-3058
    • /
    • 2014
  • In this article, we have designed and synthesized a novel donor-${\pi}$-acceptor (D-${\pi}$-A) type porphyrin-based sensitizer (denoted UI-5), in which a carboxyl anchoring group and a 9,9-dimethyl fluorene were introduced at the meso-positions of porphyrin ring via phenylethynyl and ethynyl bridging units, respectively. Long alkoxy chains in ortho-positions of the phenyls were supposed to reduce the degree of dye aggregation, which tends to affect electron injection yield in a photovoltaic cell. The cyclic voltammetry was employed to determine the band gap of UI-5 to be 1.41 eV based on the HOMO and LUMO energy levels, which were estimated by the onset oxidation and reduction potentials. The incident monochromatic photon-to-current conversion efficiency of the UI-5 DSSC assembled with double-layer (20 nm-sized $TiO_2$/400 nm-sized $TiO_2$) film electrodes appeared lower upon overall ranges of the excitation wavelengths, but exhibited a higher value over the NIR ranges (${\lambda}$ = 650-700 nm) compared to the common reference sensitizer N719. The UI-5-sensitized cell yielded a relatively poor device performance with an overall conversion efficiency of 0.74% with a short circuit photocurrent density of $3.05mA/cm^2$, an open circuit voltage of 0.54 mV and a fill factor of 0.44 under the standard global air mass (AM 1.5) solar conditions. However, our report about the synthesis and the photovoltaic characteristics of a porphyrin-based sensitizer in a D-${\pi}$-A structure demonstrated a significant complex relationship between the sensitizer structure and the cell performance.

Dye Sensitized Solar Cell using Polymer Electrolytes based on Poly(ethylene oxide) with an Ionic Liquid

  • Singh Pramod K.;Kim, Ki-Il;Rhee Hee-Woo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.273-273
    • /
    • 2006
  • The encapsulation of volatile organic electrolytes is a major challenge in practical applications of the DSSC. Ionic liquid (IL) within polymer electrolytes is an attractive candidate for replacement. Here we used a low viscosity ionic liquid 1-ethyl 3-methylimidazolium thiocyanate in order to modify ionic conductivity (${\sigma}$) of polymer electrolyte ($PEO:Kl/l_{2}$) and hence DSSC efficiency. The doping of IL enhanced ${\sigma}$ and attained maximum (${\sigma}=7.62{\times}10^{-4}S/cm$) at 80 wt% of IL concentration. Beyond this it was harder to get stable films. XRD confirmed that the intensity of the sharp PEO crystalline peaks decreased when IL was added. The DSC studies confirmed the reduction in crystallinity by adding ionic liquid.The efficiency of solar cell using aforesaid material was 0.6 % at 1 sun irradiation.

  • PDF

Novel Extended π-Conjugated Dendritic Zn(II)-porphyrin Derivatives for Dye-sensitized Solar Cell Based on Solid Polymeric Electrolyte: Synthesis and Characterization

  • Kang, Min-Soo;Oh, Jae-Buem;Roh, Soo-Gyun;Kim, Mi-Ra;Lee, Jin-Kook;Jin, Sung-Ho;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.33-40
    • /
    • 2007
  • We have designed and synthesized three Zn(II)-porphyrin derivatives, such as Zn(II) porphyrin ([G-0]Zn-P1) and aryl ether-typed dendron substituted Zn(II)-porphyrin derivatives ([G-1]Zn-P1 and [G-1]Zn-P-CN1). Their chemical structures were characterized by 1H-NMR, FT-IR, UV-vis absorption, EI-mass, and MALDI-TOF mass spectroscopies. Their electrochemical properties were studied by cyclic voltammetry measurement. These Zn(II)-porphyrin derivatives have been used to fabricate dye-sensitized solar cells (DSSCs) based on solid polymeric electrolytes as dye sensitizers and their device performances were evaluated by comparing with that of a standard Ru(II) complex dye. [G-1]Zn-P-CN1 showed the enhanced power conversion efficiency than those of other porphyrin derivatives, as expected. Short-circuit photocurrent density (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (η) of solid-typed DSSC for [G-1]Zn-P-CN1 were evaluated to be Jsc = 11.67 mA/cm2, Voc = 0.51 V, FF = 0.46, and η = 2.76%, respectively.

Influence on DSSC efficiency with different sintering conditions of $TiO_2$ ($TiO_2$의 소결조건의 변화가 염료감응 태양전지의 효율에 미치는 영향)

  • Jeon, Woong-Jae;Park, Mi-Ju;Yun, Deok-Yong;Lee, Sung-Uk;Kim, Hyung-Jin;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.433-434
    • /
    • 2008
  • Until now, many studies have been carried out on $TiO_2$ electrode, counter electrode, sensitizer and electrolyte to improve dye-sensitized solar cell(DSSC)'s performance. It was known that surface area of the $TiO_2$ are of paramount importance in determining the cell efficiency. In this experiment, $TiO_2$ working electrodes were sintered at four different temperatures (400, 450, 500 and $550^{\circ}C$) for 55 minutes in ambient atmosphere. Also these electrodes were sintered at four different times (40, 55, 70, 85minutes) in temperature where shows the highest efficiency. I-V characteristics of DSSC made up of different working electrodes were studied using solar simulator.

  • PDF

The Fabrication and Characteristics of Dye-sensitized Solar Cells (DSSCs) Using the Patterned TiO2 Films

  • Choe, Eun-Chang;Seo, Yeong-Ho;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.445.1-445.1
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next-generation solar cell because of their simple structure and low manufacturing cost. The $TiO_2$ film with thickness of $8{\sim}10{\mu}m$, which consists of nanoparticles, acts as both a scaffold with a high surface-to-volume ratio for the dye loading and a pathway to remove the electrons. However, charge carriers have to move across many particle boundaries by a hopping mechanism. So, one dimensional nanostructures such as nanotubes, nanorods and nanowires should improve charge carrier transportation by providing a facile direct electron pathway and lowering the diffusion resistance. However, the efficiencies of DSSCs using one dimensional nanostructures are less than the $TiO_2$ nanoparticle-based DSSCs. In this work, the patterned $TiO_2$ film with thickness of $3{\mu}m$ was deposited using photolithography process to decrease of electron pathway and increase of surface area and transmittance of $TiO_2$ films. Properties of the patterned $TiO_2$ films were investigated by various analysis method such as X-ray diffraction, field emission scanning electron microscopy (FESEM) and UV-visible spectrophotometer.

  • PDF

Influence of Nanostructured TiO2 Electrode Fabricated with Acid-treated Paste on the Photovoltaic Efficiency of Dye-Sensitized Solar Cells (산처리된 페이스트로 제조한 나노 구조체 TiO2 전극이 염료감응형 태양전지의 효율에 미치는 영향)

  • Lee, Jae-Wook;Hwang, Kyung-Jun;Roh, Sung-Hee;Kim, Sun-Il
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.356-360
    • /
    • 2007
  • Recently, dye sensitized solar cells (DSSCs) composed of nanoporous $TiO_2$, light-sensitive dyes, electrolytes, and counter electrode have been received much attention. Nanostructured particles with higher surface area for the higher adsorption of Ru (II) dye are required to increase the quantity of light absorption. Also, it has been reported that the key factor to achieve high energy conversion efficiency in the photoelectrode of DSSC is the heat treatment of $TiO_2$ paste with acid addition. In this work, we investigated the influence of acid treatment of $TiO_2$ solar cell on the photovoltaic performance of DSSC. The working electrodes fabricated in this work were characterized by X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), field emission scanning electron microscope (FE-SEM), and atomic force microscope (AFM). In addition, the influence of nanostructured photoelectrode fabricated with the acid-treated paste on the energy conversion efficiency was investigated on the basis of photocurrent-potential curves. It was found that the influence of acid-treated paste on the photovoltaic efficiency was significant.