• Title/Summary/Keyword: DSRC traffic information system

Search Result 46, Processing Time 0.023 seconds

A Study on Advanced Location Awareness Component using Smart Phone GPS in BIS

  • Lee, Hwajeong;Koh, Jingwang;Lim, Gyugeun;Lee, Seookcheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.41-47
    • /
    • 2019
  • A BIS(Bus Information System) collects, processes and analyzes information such as real-time location and operation status during bus operation. And It is a system that provides valid information to citizens, drivers, traffic centers and bus companies. Transport information system sent by an each bus is collected through GPS(Global Positioning System), DSRC(Dedicated Short Range Communications), Beacon and passed to transport information center. BIS data by collected is handled and analyzed. Next, it is transmitted to citizen, drivers and bus companies in real time. The result of 5 times simulation satisfied the test criteria(error range ${\pm}10m$) with an average error range of 3.306m, and the reliability is increased. In this paper, we propose a improved location transfer component that can provide users to quicker and more accurate location information than existing BIS using GPS of smart phone. It can be seen that reliability is improved by securing improved bus position data.

AVLS Using the Dedicated Wireless Communication between Vehicle and Road-Side Equipment (차량과 노변기지국간 전용 무선 데이터 통신을 이용한 차량위치 추적 시스템)

  • Hong, Sung-Bum;Lee, Jung-Gu;Na, Won;Choi, Un-Seok;Baek, Joong-Hwan;Hwang, Byung-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.171-181
    • /
    • 2000
  • In this paper, we propose an AVLS(Automatic Vehicle Location System) using the DSRC(Dedicated Short Range Communication) which adopts a radio communication tool between RSE(Road-Side Equipment) and OBE(On-Board Equipment) on a vehicle and uses the ISM bandwidth of 5.8GHz radio frequency. Typical AVLS uses the sensors for detecting the vehicle, but the DSRC system is developed for supporting various services such as the position of vehicle, clearance, vehicle to vehicle communication, collection and distributions of traffic and road information. Also, for fast processing, we design three-layer configuration of physical(L1), data link(L2), and application layer(L7), which simplifies the seven-layer configuration. We suggest the proposed system as a new technology for replacement of typical wireless communication system and sensors for AVLS.

  • PDF

A Study on the Next Generation Dedicated Short Range Communication System using OFDM (OFDM 방식의 차세대 단거리전용 통신 시스템 성능 개선에 관한 연구)

  • Kim, Man-Ho;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.394-399
    • /
    • 2006
  • In this paper, we investigated performance for 5.8GHz dedicated short range communication system using OFDM which will be applied to Intelligent transportation system services. The maximum speed of a vehicle in DSRC channel is very fast as 180km/h, so a service time is very short to serve a various traffic information if hand-off is not occurred. Therefore higher bit rate is required to proved advanced and intelligent service to the drivers of various vehicle and the data transmission rate of the next generation DSRC system if being promoted over 10Mbps. The signals received in Clarke & Gans channel have been simulated using the computer simulator.

  • PDF

Traffic Signal Control Algorithm for Isolated Intersections Based on Travel Time (독립교차로의 통행시간 기반 신호제어 알고리즘)

  • Jeong, Youngje;Park, Sang Sup;Kim, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.6
    • /
    • pp.71-80
    • /
    • 2012
  • This research suggested a real-time traffic signal control algorithm using individual vehicle travel times on an isolated signal intersection. To collect IDs and passing times from individual vehicles, space-based surveillance systems such as DSRC were adopted. This research developed models to estimate arrival flow rates, delays, and the change rate in delay, by using individual vehicle's travel time data. This real-time signal control algorithm could determine optimal traffic signal timings that minimize intersection delay, based on a linear programming. A micro simulation analysis using CORSIM and RUN TIME EXTENSION verified saturated intersection conditions, and determined the optimal traffic signal timings that minimize intersection delay. In addition, the performance of algorithm varying according to market penetration was examined. In spite of limited results from a specific scenario, this algorithm turned out to be effective as long as the probe rate exceeds 40 percent. Recently, space-based traffic surveillance systems are being installed by various projects, such as Hi-pass, Advanced Transportation Management System (ATMS) and Urban Transportation Information System (UTIS) in Korea. This research has an important significance in that the propose algorithm is a new methodology that accepts the space-based traffic surveillance system in real-time signal operations.

Architecture of Collision Avoidance System between Bicycle and Moving Object by Using V2V(X) Network (V2V(X) 네트워크를 이용한 자전거와 이동 객체간 충돌 회피 시스템 구조)

  • Gu, Bon-gen
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.10-16
    • /
    • 2018
  • Bicycle shares road with various traffic elements like car, pedestrian and, the number of bicycle user is increasing in recent. Therefore, bicycle accident continuously increases. Especially in complex traffic environment, bicycle accident which collides with moving object such as pedestrian occupies many parts of bicycle accident in the reason that the cyclist does not recognize moving object. In this paper, to reduce or avoid the bicycle accident, we propose the architecture of bicycle collision avoidance system in which that cyclist can get the information about moving object by connecting bicycle to network of vehicles and does some action for avoiding collision. In our architecture, when traffic element such as car recognizes moving object, it decides the moving direction of object, and transfers information about moving direction via vehicles network. Bicycle collision avoidance system from our proposed architecture receives this information, and alerts to cyclist when the moving object influences the safety of bicycle.

Design and Implementation of Response type of Flickering Green Signal System using Beacon Message (비콘메세지를 이용한 반응형 녹색점멸 신호시스템 설계 및 구현)

  • An, Hyo-In;Mun, Hyung-Jin;Kim, Chang-Geun
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.241-247
    • /
    • 2016
  • As a domestic traffic control signal system, either the system with which a traffic signal turns into green at regular intervals or the system with which an amber or a red signal flickers on local roads without heavy traffic at midnight has been utilized. However, when the former system is used for roads with light traffic at midnight, delays and congestion can be incurred. Besides, in case of the latter signal system, the risk of vehicle crash is high. This study proposes a response type of flickering green signal system that rearranges signal system after analyzing beacon messages including sensor data. The proposed system, on a trunk road or a branch road at midnight, makes the signal keep flickering in green; When a vehicle enters the range of RSE, the transfer coverage, it transmits beacon messages regularly and Agent System analyzes the messages and alters the signal. It is a system by which vehicles move following the altered signal system, which will not only ensure smooth flow but also prevent vehicles from crashing on a road with light traffic. As a result of a simulation, traffic throughput and the average waiting time displayed 10 to 30 percent better improvement than existing signal systems, in terms of performance.

A Robotcar-based Proof of Concept Model System for Dilemma Zone Decision Support Service (딜레마구간 의사결정 지원 서비스를 위한 로봇카 기반의 개념검증 모형 시스템)

  • Lee, Hyukjoon;Chung, Young-Uk;Lee, Hyungkeun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.4
    • /
    • pp.57-62
    • /
    • 2014
  • Recently, research activities to develop services for providing safety information to the drivers in fast moving vehicles based on various wireless network technologies such as DSRC (Dedicated Short Range Communication), IEEE 802.11p WAVE (Wireless Access for Vehicular Environment) are widely being carried out. This paper presents a proof-of-concept model based on a robot-car for Dilemma Zone Decision Assistant Service using the wireless LAN technology. The proposed model system consists of a robot-car based on an embedded Linux OS equipped with a WiFi interface and an on-board unit emulator, an Android-based remote controller to model a human driver interface, a laptop computer to run a model traffic signal controller and signal lights, and a WiFi access point to model a road-side unit.

The Design and ImplemEntation of Multi-Network Interface Switching for ITS Services (ITS 서비스를 위한 다중 네트워크 인터페이스 스위칭 설계 및 구현)

  • Ko, Jae-Jin;Choi, Ki-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.60-66
    • /
    • 2011
  • Currently, ITS (Intelligent Transport System) system is supporting a variety of services to be enhanced traffic's efficiency and driver's safety as developing of information communications and network technology. High data transfer communications such as Wibro, HSPA and WAVE are used for providing ITS services, but there are some differences from specification and performance applied. So, users who are employing the communication systems to transfer data whatever they want to have been suffering from use. In this paper, it is proposed that user can use various high data transfer communication systems wherever environments they are in using adaptation of system change. Also, it is implemented performance of system which uses alternate communication scheme in mobile terminal based on embedded platform.

Queue Length Based Real-Time Traffic Signal Control Methodology Using sectional Travel Time Information (구간통행시간 정보 기반의 대기행렬길이를 이용한 실시간 신호제어 모형 개발)

  • Lee, Minhyoung;Kim, Youngchan;Jeong, Youngje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • The expansion of the physical road in response to changes in social conditions and policy of the country has reached the limit. In order to alleviate congestion on the existing road to reconsider the effectiveness of this method should be asking. Currently, how to collect traffic information for management of the intersection is limited to point detection systems. Intelligent Transport Systems (ITS) was the traffic information collection system of point detection method such as through video and loop detector in the past. However, intelligent transportation systems of the next generation(C-ITS) has evolved rapidly in real time interval detection system of collecting various systems between the pedestrian, road, and car. Therefore, this study is designed to evaluate the development of an algorithm for queue length based real-time traffic signal control methodology. Four coordinates estimate on time-space diagram using the travel time each individual vehicle collected via the interval detector. Using the coordinate value estimated during the cycle for estimating the velocity of the shock wave the queue is created. Using the queue length is estimated, and determine the signal timing the total queue length is minimized at intersection. Therefore, in this study, it was confirmed that the calculation of the signal timing of the intersection queue is minimized.

Policy Plans for Activation of Korean ITS Industry (국내 ITS 산업 활성화를 위한 정책적 방안 연구)

  • Park, Yong-Seo;Lee, Jae-Kyoung;Lee, Jin-Ho;Kang, Byeong-Gwon
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.187-192
    • /
    • 2013
  • Current Korean ITS policies are decided by two persuading parties, so that ITS industry has great difficulties in establishing unified policies and developing ITS related industries. This paper provides the analysis of current Korean ITS policy issues, and suggests the ways how to activate the ITS industry. First, the ITS policy should be unified through agreement between related departments in government. Second, ITS should be recognized as social overhead capital and thus implemented as national infrastructure. Third, define the range of ITS services to prevent confusion with general wireless and mobile communication services.