• Title/Summary/Keyword: DSP(Digital Signal Process)

Search Result 74, Processing Time 0.023 seconds

Efficient FPGA Logic Design for Rotatory Vibration Data Acquisition (회전체 진동 데이터 획득을 위한 효율적인 FPGA 로직 설계)

  • Lee, Jung-Sik;Ryu, Deung-Ryeol
    • 전자공학회논문지 IE
    • /
    • v.47 no.4
    • /
    • pp.18-27
    • /
    • 2010
  • This paper is designed the efficient Data Acquisition System for an vibration of rotatory machines. The Data Acquisition System is consist of the analog logic having signal filer and amplifier, and digital logic with ADC, DSP, FPGA and FIFO memory. The vibration signal of rotatory machines acquired from sensors is controlled by the FPGA device through the analog logic and is saved to FIFO memory being converted analog to digital signal. The digital signal process is performed by the DSP using the vibration data in FIFO memory. The vibration factor of the rotatory machinery analysis and diagnosis is defined the RMS, Peak to Peak, average, GAP, FFT of vibration data and digital filtering by DSP, and is need to follow as being happened the event of vibration and make an application to an warning system. It takes time to process the several analysis step of all vibration data and the event follow, also special event. It should be continuously performed the data acquisition and the process, however during processing the input signal the DSP can not be performed to the acquisited data after then, also it will be lose the data at several channel. Therefore it is that the system uses efficiently the DSP and FPGA devices for reducing the data lose, it design to process a part of the signal data to FPGA from DSP in order to minimize the process time, and a process to parallel process system, as a result of design system it propose to method of faster process and more efficient data acquisition system by using DSP and FPGA than signal DSP system.

Overview and Development of Digital SignalProcessing

  • Zhang, Chun-Xu;Shin, Yun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.2
    • /
    • pp.65-70
    • /
    • 2008
  • Digital signal processing (DSP) is the process of taking a signal and performing an algorithm on it to analyze, modify, or better identify that signal.[1] To take advantage of DSP advances, one must have at least a basic understanding of DSP theory along with an understanding of the hardware architecture designed to support these new advances. There are several programming techniques that maximize the efficiency of the DSP hardware, as well as a few fundamental concepts used to implement DSP software. This article introduced some of these underlying functions that are the building blocks of complex signal processing functions, and It will touch on the fundamental concepts of DSP theory and algorithms and also provide an overview of the implementation and optimization of DSP software, and discuss the development of DSP.

  • PDF

A Study on Real Time Monitoring of Tool Breakage in Milling Operation Using a DSP (DSP를 이용한 정면 밀링공구의 실시간 파단 감시방법에 관한 연구)

  • Baek, Dae-Kyun;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.168-176
    • /
    • 1996
  • A diagnosis system which can monitor tool breakage and chipping in real time was developed using a DSP(Digital Signal Processor) board in face milling operation. AR modelling and band energy method were used to extract the feature of tool states from cutting force signals. Artificial neural network embedded on DSP board discriminates different patterns from features got after signal processing. The features extracted from AR modelling are more accurate for the malfunction of a process than those from band energy method, even though the computing speed of the former is slow. From the processed features, we can construct the real time diagnosis system which monitors malfunction by using a DSP board having a parallel processing capability.

  • PDF

Design of FPGA in Power Control Unit for Control Rod Control System (원자로 제어봉 구동장치 제어시스템용 전력제어기 FPGA 설계)

  • Lee, Jong-Moo;Shin, Jong-Ryeol;Kim, Choon-Kyung;Park, Min-Kook;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.563-566
    • /
    • 2003
  • We have designed the power control unit which belongs to the power cabinet and controls the power supplied to Control Rod Drive Mechanism(CRDM) as a digital system based on Digital Signal Processor(DSP). The power control unit dualized as the form of Master/Slave has had its increased reality. The Central Process Unit(CPU) board of a power control unit possesses two Digital Signal Processors(DSPs) of the control DSP for performing the tasks of power control and system monitoring and the communication of the Control DSP and the Communication DSP. To accomplish the functions requested in the power control unit effectively, we have installed Field Programmable Gate Arrays(FPGAS) on the CPU board and have FPGAs perform the memory mapping, the generation of each chip selection signal, the giving and receiving of the signals between the power controllers dualized, the fault detection and the generation of the firing signals.

  • PDF

Implementation of QPSK Modem using TMS320C31 (TMS320C31을 이용한 QPSK 모뎀 구현)

  • 김광호;김종욱;조병모;김영수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.817-826
    • /
    • 2001
  • In this paper, we implemented QPSK(Quadrature Phase-Shift Keying) modem which is widely used for communication systems, using a general Digital Signal Processor(DSP), TM320C31. Up to now, almost all of communication systems consist of hardware. However, the implemented system herein is composed of software and hardware part. Software part includes the modulation process, before passing D/A(Digital-to-Analog Converter) and the demodulation process, after passing A/D(Analog-to-Digital Converter) in IF(Intermediate Frequency) node. Hardware part is related to input, output and process of signal. To demonstrate the successful implementation of modem, the output results obtained from DSP processor are compared with the simulated result on the personal computer.

  • PDF

Digital Audio Effect System-on-a-Chip Based on Embedded DSP Core

  • Byun, Kyung-Jin;Kwon, Young-Su;Park, Seong-Mo;Eum, Nak-Woong
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.732-740
    • /
    • 2009
  • This paper describes the implementation of a digital audio effect system-on-a-chip (SoC), which integrates an embedded digital signal processor (DSP) core, audio codec intellectual property, a number of peripheral blocks, and various audio effect algorithms. The audio effect SoC is developed using a software and hardware co-design method. In the design of the SoC, the embedded DSP and some dedicated hardware blocks are developed as a hardware design, while the audio effect algorithms are realized using a software centric method. Most of the audio effect algorithms are implemented using a C code with primitive functions that run on the embedded DSP, while the equalization effect, which requires a large amount of computation, is implemented using a dedicated hardware block with high flexibility. For the optimized implementation of audio effects, we exploit the primitive functions of the embedded DSP compiler, which is a very efficient way to reduce the code size and computation. The audio effect SoC was fabricated using a 0.18 ${\mu}m$ CMOS process and evaluated successfully on a real-time test board.

A Study on a Reactive Power Control using Digital Filtering (디지털 필터링을 이용한 무효전력 제어에 관한 연구)

  • 우천희;강신준;이덕규;우광방;이성환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.517-524
    • /
    • 1998
  • This paper discusses the development of a reactive power controller using digital signal processing. Digital Signal Processing is the technique of using digital devices to Process continuous signals or data, often in real-time. And DSP algorithms are associated with a discrete time interval between input samples. When one designs a digital filter, one can use a Laplace transform to determine the continuous time frequency response. The corresponding discrete time transform is called Z transform and depends upon discrete samples of the input spaced equally in time. The objectives of this paper are to minimize real power losses and improve the power factor of a given system. Also, the implementation of a direct-form non recursive filter on the TMS320C31 has been described. The application of this microprocessor-based controller using DSP on test system reveals its numerous advantages. Performance and features of the controller for the reactive power control are analyzed.

  • PDF

FPGA-DSP Based Implementation of Lane and Vehicle Detection (FPGA와 DSP를 이용한 실시간 차선 및 차량인식 시스템 구현)

  • Kim, Il-Ho;Kim, Gyeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.727-737
    • /
    • 2011
  • This paper presents an implementation scheme of real-time lane and vehicle detection system with FPGA and DSP. In this type of implementation, defining the functionality of each device in efficient manner is of crucial importance. The FPGA is in charge of extracting features from input image sequences in reduced form, and the features are provided to the DSP so that tracking lanes and vehicles are performed based on them. In addition, a way of seamless interconnection between those devices is presented. The experimental results show that the system is able to process at least 15 frames per second for video image sequences with size of $640{\times}480$.

A Programmable Doppler Processor Using a Multiple-DSP Board (다중 DSP 보드를 이용한 프로그램 가능한 도플러 처리기)

  • 신현익;김환우
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.333-340
    • /
    • 2003
  • Doppler processing is the heart of pulsed Doppler radar. It gives a clutter elimination and coherent integration. With the improvement of digital signal processors (DPSs), the implementation using them is more widely used in radar systems. Generally, so as for Doppler processor to process the input data in real time, a parallel processing concept using multiple DSPs should be used. This paper implements a programmable Doppler processor, which consists of MTI filter, DFB and square-law detector, using 8 ADSP21060s. Formulating the distribution time of the input data, the transfer time of the output data and the time required to compute each algorithm, it estimates total processing time and the number of required DSP. Finally, using the TSG that provides radar control pulses and simulated target signals, performances of the implemented Doppler processor are evaluated.

Design of a BLDC Servo Motor Control System for the Auto Process of Assembly and Supply (자동 조립 및 공급을 위한 BLDC 서보 전동기 제어시스템 설계)

  • Sim, Dong-Seok;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1095-1101
    • /
    • 2012
  • This paper presents a design of a BLDC servo motor control system for the auto process of assembly and supply using DSP(Digital Signal Processor) controller and IGBT driver. The assembly and supply auto processing system needs torque, speed, position control of servo motor for variable action. This paper implements those servo control with vector control and space vector PWM(Pulse Width Modulation) technique. As CPU of controller, TMS320F240 DSP was adopted because it has PWM waveform generator, A/D converter, SPI(Serial Peripheral Interface) port and many input/output port etc. This control system consists of 3-level hierarchy structure that main host PC manages three sub DSP system which transfer downward command and are monitoring the states of end servo controllers. Each sub DSP system operates eight BLDC servo controllers which control BLDC motor using DSP and IPM. Between host system and sub DSP communicate with RS-422, between main processor and controller communicate with SPI port.