• Title/Summary/Keyword: DSM(Digital Surface Model)

Search Result 123, Processing Time 0.023 seconds

Digital Orthophoto Generation from LIDAR Data (LIDAR 데이터를 이용한 수치정사사진의 제작)

  • 김형태;심용운;박승룡;김용일
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.137-143
    • /
    • 2002
  • In this study we generated digital orthophoto from LIDAR data. To generate digital orthophoto, we make TIN from raw laser scanning data(XYZ point data) and compiled DSM from this TIN. In this procedure much noise appeared along the break lines in DSM and this can give bad effect to the quality of digital orthophoto. Therefore, we applied various techniques which can refine the break line. In the result, we concluded that the fusion of LIDAR DEM of lowland and extracted buildings was adequate to generating DSM. So we generated the digital orthophoto from DSM generated from this technique. In the result of quality test, the positional accuracy of this digital orthophoto was better than the positional accuracy of 1:5,000 map.

Parallel Processing of Airborne Laser Scanning Data Using a Hybrid Model Based on MPI and OpenMP (MPI와 OpenMP기반 하이브리드 모델을 이용한 항공 레이저 스캐닝 자료의 병렬 처리)

  • Han, Soo-Hee;Park, Il-Suk;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.135-142
    • /
    • 2012
  • In the present study, a parallel processing method running on a multi-core PC-Cluster is introduced to produce digital surface model (DSM) and digital terrain model (DTM) from huge airborne laser scanning data. A hybrid model using both message passing interface (MPI) and OpenMP was devised by revising a conventional MPI model which utilizes only MPI, and tested on a multi-core PC-Cluster for performance validation. In the results, the hybrid model has not shown better performances in the interpolation process to produce DSM, but the overall performance has turned out to be better by the help of reduced MPI calls. Additionally, scheduling function of OpenMP has revealed its ability to enhance the performance by controlling inequal overloads charged on cores induced by irregular distribution of airborne laser scanning data.

Image Matching Method of Digital Surface Model Generation for Built-up Area (건물지역 수치표면모형 자동생성을 위한 영상정합 방법)

  • 박희주
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.3
    • /
    • pp.315-322
    • /
    • 2000
  • DSM(Digital Surface Model) is a digital model which represents the surface elevation of a region. DSM is necessary for orthoimage generation, and frequently used in man-made object extraction from aerial photographs nowadays. Image matching technique enables automatic DSM generation. This proposed a image matching method which can be applied to automatic generation of DSM for Built-up Area. The matching method proposed is to find conjugate points and conjugate lines from overlapping aerial images. In detecting conjugate points, the positional relation between possible conjugate point pair as well as correlation of pixel gray value is compared. In detecting conjugate lines, the color attribute of flank region of line, shape of line, positional relation between neighborhood points and lines, and the connection relation between lines are compared. The proposed matching method is assumed to be useful for DSM generation including Built-up Area.

  • PDF

Quality Assessment of Digital Surface Model Vertical Position Accuracies by Ground Control Point Location (지상기준점 선점 위치에 따른 DSM 높이 정확도 분석)

  • Lee, Jong Phil
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.125-136
    • /
    • 2021
  • Recently, Unmanned Aerial Vehicle utilization and image processing technology for remote sensing have diversified remarkably with Orthophoto and Digital Surface Model. In particular, It uses more application fields such as spatial information analysis and hazardous areas as well as land surveying. This study analyses the accuracy of the coordinate on Orthophoto and DSM height on slope area with high and low differences by using UAV images. As the result of this study, in the case of GCP on 2D orthophoto, the location error was not produced significantly. The vertical position of the DSM showed the highest accuracy when the height difference between GCPs is under 30m(RMSEZ=0.07m). The location of the GCPs was divided into approximately 10m, 20m, 30m, and 40m with analysis for each of the eight points of GCP and inspection points in general. This study expects that producing both horizontal accuracy of Orthophoto and vertical accuracy of DSM using UAV on the sloped area which similar to this research area will help in spatial information fields.

Quality Evaluation of Orthoimage and DSM Based on Fixed-Wing UAV Corresponding to Overlap and GCPs (중복도와 지상기준점에 따른 고정익 UAV 기반 정사영상 및 DSM의 품질 평가)

  • Yoo, Yong Ho;Choi, Jae Wan;Choi, Seok Keun;Jung, Sung Heuk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.3-9
    • /
    • 2016
  • UAV(unmanned aerial vehicle) can quickly produce orthoimage with high-spatial resolution and DSM(digital surface model) at low cost. However, vertical and horizontal positioning accuracy of orthoimage and DSM, which are obtained by UAV, are influenced by image processing techniques, quality of aerial photo, the number and position of GCPs(ground control points) and overlap in flight plan. In this study, effects of overlap and the number of GCPs are analyzed in orthoimage and DSM. Positioning accuracy are estimated based on RMSE(root mean square error) by using dataset of nine pairs. In the experiments, Overlaps and the number of GCPs have influence on horizontal and vertical accuracy of orthoimage and DSM.

Digital Surface Model Generation using Aerial Lidar Data and Ground Control Point Acquisition (항공 라이다 데이터를 이용한 공간해상도별 수치표면모형 제작 및 지상기준점 획득 가능성 분석)

  • Kim Kam-Rae;Hwang Won-Soon;Lee Ho-Nam
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.485-490
    • /
    • 2006
  • In this study, the Digital Surface Models of various spatial resolutions were constructed using LIDAR point data on Digital Photogrammetric System. Then, the accuracies of each DSM's were evaluated using GPS surveying data. And also, observable features were classified and their accuracies were evaluated to verify the availability for Ground Control Point. On Socet Set, Digial Photogrametric System 5 DSM's of which spatial resolutions were 0.15m, 0.5m, 1.0m, 2.5m and 5.0m were constructed and the accuracies of eahc DSM's evaluated in RMSE. The RMSE's of each DSM's were 0.03m, 0.05m, 0.08m, 0.12m and 0,19m. The building feature was observable in DSM's of which spatial resolutions were 0.15m, 0.30m and 0.50m. On the contrary, it could hardly be observed in those of other spatial resolutions. In comparison with the digital map at the scale of 1:1,000, the DSM at the spatial resolution of 0.lim was shifted horizaltally by 0.6m-0.7m of RMSE in each X, Y direction. Therefore, GCP of which horizontal RMSE is better than 1m can be obtained from the DSM at the spatial resolution of 0.15m, of which vertical RMSE is 0.03m-0.19m as the RMSE of DSM. This point cannot be used in aerial triangulation of cartography but can be used for GCP in modeling of satellite image at the moderate resolution.

  • PDF

Normalized Digital Surface Model Extraction and Slope Parameter Determination through Region Growing of UAV Data (무인항공기 데이터의 영역 확장법 적용을 통한 정규수치표면모델 추출 및 경사도 파라미터 설정)

  • Yeom, Junho;Lee, Wonhee;Kim, Taeheon;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.499-506
    • /
    • 2019
  • NDSM (Normalized Digital Surface Model) is key information for the detailed analysis of remote sensing data. Although NDSM can be simply obtained by subtracting a DTM (Digital Terrain Model) from a DSM (Digital Surface Model), in case of UAV (Unmanned Aerial Vehicle) data, it is difficult to get an accurate DTM due to high resolution characteristics of UAV data containing a large number of complex objects on the ground such as vegetation and urban structures. In this study, RGB-based UAV vegetation index, ExG (Excess Green) was used to extract initial seed points having low ExG values for region growing such that a DTM can be generated cost-effectively based on high resolution UAV data. For this process, local window analysis was applied to resolve the problem of erroneous seed point extraction from local low ExG points. Using the DSM values of seed points, region growing was applied to merge neighboring terrain pixels. Slope criteria were adopted for the region growing process and the seed points were determined as terrain points in case the size of segments is larger than 0.25 ㎡. Various slope criteria were tested to derive the optimized value for UAV data-based NDSM generation. Finally, the extracted terrain points were evaluated and interpolation was performed using the terrain points to generate an NDSM. The proposed method was applied to agricultural area in order to extract the above ground heights of crops and check feasibility of agricultural monitoring.

Extraction of 3D Objects Around Roads Using MMS LiDAR Data (MMS LiDAR 자료를 이용한 도로 주변 3차원 객체 추출)

  • CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.152-161
    • /
    • 2017
  • Making precise 3D maps using Mobile Mapping System (MMS) sensors are essential for the development of self-driving cars. This paper conducts research on the extraction of 3D objects around the roads using the point cloud acquired by the MMS Light Detection and Ranging (LiDAR) sensor through the following steps. First, the digital surface model (DSM) is generated using MMS LiDAR data, and then the slope map is generated from the DSM. Next, the 3D objects around the roads are identified using the slope information. Finally, 97% of the 3D objects around the roads are extracted using the morphological filtering technique. This research contributes a plan for the application of automated driving technology by extracting the 3D objects around the roads using spatial information data acquired by the MMS sensor.

The Performance Analysis of an Airborne Radar Altimeter based on Simultaneously Acquired LiDAR Data (비행 시험을 통한 레이더 전파고도계 특성 분석)

  • Yoon, Jongsuk;Kwak, Hee Jun;Kim, Yoon Hyoung;Shin, Young Jong;Yoo, Ki Jeong;Yu, Myeong Jong
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.81-94
    • /
    • 2013
  • The Radar altimeter transmits radio signals to the surface, receives the backscattered signals and measures the distance between the airplane and the nadir surface. The measurements of radar altimeter are affected by various factors on the surface below the aircraft. This study performed flight campaigns in June 2012 and acquired raw data from radar altimeter, LiDAR and other sensors. Based on the LiDAR DSM (Digital Surface Model) as a reference data, the characteristics of radar altimeter were analyzed in the respect of range and surface area affecting on the receiving power of the radar altimeter. Consequently, the radar altimeter was strongly affected by the surface area within beam width and reflectivity related to RCS (Radar Cross Section) rather than range.

Comparison of SGM Cost for DSM Generation Using Satellite Images (위성영상으로 DSM을 생성하기 위한 SGM Cost의 비교)

  • Lee, Hyoseong;Park, Soonyoung;Kwon, Wonsuk;Han, Dongyeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.473-479
    • /
    • 2019
  • This study applied SGM (Semi Global Matching) to generate DSM (Digital Surface Model) using WorldView-1 high-resolution satellite stereo pair in Terrassa, Spain provided by ISPRS (International Society for Photogrammetry and Remote Sensing). The SGM is an image matching algorithm that performs the computation of the matching cost for the stereo pair in multi-paths and aggregates the computed costs sequentially. This method finally calculates the disparity corresponding to the minimum (or maximum) value of the aggregation cost. The cost was applied to MI (Mutual Information), NCC (Normalized Cross-Correlation), and CT (Census Transform) in order to the SGM. The accuracy and performance of the outline representation result in DSM by each cost are presented. Based on the images used and the subject area, the accuracy of the CT cost results was the highest, and the outline representation was also most clearly depicted. In addition, while the SGM method represented more detailed outlines than the existing software, many errors occurred in the water area.